Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 4
Aug 2021
Turn off MathJax
Article Contents
Yanqi Zhang, Li Liu. Insights into the Formation Mechanism of Low Water Saturation in Longmaxi Shale in the Jiaoshiba Area, Eastern Sichuan Basin. Journal of Earth Science, 2021, 32(4): 863-871. doi: 10.1007/s12583-020-1353-3
Citation: Yanqi Zhang, Li Liu. Insights into the Formation Mechanism of Low Water Saturation in Longmaxi Shale in the Jiaoshiba Area, Eastern Sichuan Basin. Journal of Earth Science, 2021, 32(4): 863-871. doi: 10.1007/s12583-020-1353-3

Insights into the Formation Mechanism of Low Water Saturation in Longmaxi Shale in the Jiaoshiba Area, Eastern Sichuan Basin

doi: 10.1007/s12583-020-1353-3
More Information
  • Corresponding author: Li Liu, Liuli0892@vip.sina.com
  • Received Date: 09 Mar 2020
  • Accepted Date: 20 May 2021
  • Publish Date: 16 Aug 2021
  • Investigating the variation of water content in shale reservoir is important to understand shale gas enrichment and evaluate shale gas resource potential. Low water saturation is widely spread in Longmaxi marine organic-rich shale. To illustrate the formation mechanism of low water saturation, this paper analyzed water saturation of Longmaxi shale reservoir, restored the history of natural gas carrying water capacity combining homogenization temperature and trapping pressure of fluid inclusion with simulated thermal history, and established a model to explain pore water displaced by natural gas during the thermal evolution. Results show that the gas-rich Longmaxi shale reservoir is characterized by low water saturation with measured values ranging from 9.81% to 48.21% and an average value of 28.22%. TOC in high-mature to over-high-mature Longmaxi organic-rich shale is negatively correlated with water saturation, indicating that well-connected organic pores are not available for water. However, quartz and clay mineral content are positively correlated with water saturation, which suggests that inorganic-matter-hosted pores are the main storage space for water formation. The water carrying capacity of natural gas varies as a function of gas generation and expulsion history, which displaces bound and movable water in organic pores that are part of bound and movable water from inorganic pores. The process can be divided into two phases. The first phase occurred due to the kerogen degradation into gas at Ro of 1.2%-1.6% with a water carrying capacity of natural gas ranging from 5 632.57-7 838.73 g/km3. The second phase occurred during the crude oil cracking into gas at Ro>1.6% with a water carrying capacity of natural gas ranging from 10 620.04 and 19 480.18 g/km3. The water displacement associated with natural gas generation and migration resulted in gas filling organic pores and gas-water coexisting in the brittle-mineral-hosted pores and clay-mineral-hosted pores.

     

  • loading
  • Bennion, D. W., Shaw, D. R., Thomas, F. B., et al., 1999. Compositional Numerical Modelling in Naturally Fractured Reservoirs. Journal of Canadian Petroleum Technology, 38(7): 235-248. https://doi.org/10.2118/99-07-03
    Bryndzia, L. T., 2012. Origin of High Salinities in Hydraulic Fracture Flow Back Fluids-An Example from the Haynesville Shale Gas Play, USA. 3rd EAGE Shale Workshop-Shale Physics and Shale Chemistry, January 23-25, 2012, Barcelona. https://doi.org/10.3997/2214-4609.20143943
    Burnham, A. K., Sweeney, J. J., 1989. A Chemical Kinetic Model of Vitrinite Maturation and Reflectance. Geochimica et Cosmochimica Acta, 53(10): 2649-2657. https://doi.org/10.1016/0016-7037(89)90136-1
    Chalmers, G. R., Bustin, R. M., Power, I. M., 2012a. Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units. AAPG Bulletin, 96(6): 1099-1119. https://doi.org/10.1306/10171111052
    Chalmers, G. R. L., Ross, D. J. K., Bustin, R. M., 2012b. Geological Controls on Matrix Permeability of Devonian Gas Shales in the Horn River and Liard Basins, Northeastern British Columbia, Canada. International Journal of Coal Geology, 103: 120-131. https://doi.org/10.1016/j.coal.2012.05.006
    Chen, L., Lu, Y. C., Jiang, S., et al., 2015. Heterogeneity of the Lower Silurian Longmaxi Marine Shale in the Southeast Sichuan Basin of China. Marine and Petroleum Geology, 65: 232-246. https://doi.org/10.1016/j.marpetgeo.2015.04.003
    Chung, F. H., 1974. Quantitative Interpretation of X-Ray Diffraction Patterns of Mixtures. Ⅰ. Matrix-Flushing Method for Quantitative Multicomponent Analysis. Journal of Applied Crystallography, 7(6): 519-525. https://doi.org/10.1107/s0021889874010375
    Dodson, C. R., Standing, M. B., 1944. Pressure-Volume-Temperature and Solubility Relations for Natural-Gas-Water Mixtures. Drilling and Production Practice, 44: 173-179
    Duan, Z. H., Møller, N., Greenberg, J., et al., 1992. The Prediction of Methane Solubility in Natural Waters to High Ionic Strength from 0 to 250 ℃ and from 0 to 1 600 Bar. Geochimica et Cosmochimica Acta, 56(4): 1451-1460. https://doi.org/10.1016/0016-7037(92)90215-5
    Fang, C. H., Huang, Z. L., Wang, Q. Z., 2014. Cause and Significance of the Ultra-Low Water Saturation in Gas-Enriched Shale Reservoir. Natural Gas Geoscience, 25(3): 471-476. https://doi.org/10.11764/j.issn.1672-1926.2014.03.0471 (in Chinese with English Abstract)
    Gasparik, M., Bertier, P., Gensterblum, Y., et al., 2014. Geological Controls on the Methane Storage Capacity in Organic-Rich Shales. International Journal of Coal Geology, 123: 34-51. https://doi.org/10.1016/j.coal.2013.06.010
    Gou, Q., Xu, S., 2019. Quantitative Evaluation of Free Gas and Adsorbed Gas Content of Wufeng-Longmaxi Shales in the Jiaoshiba Area, Sichuan Basin, China. Advances in Geo-Energy Research, 3(3): 258-267. https://doi.org/10.26804/ager.2019.03.04
    Hu, Y. N., Devegowda, D., Sigal, R., 2016. A Microscopic Characterization of Wettability in Shale Kerogen with Varying Maturity Levels. Journal of Natural Gas Science and Engineering, 33: 1078-1086. https://doi.org/10.1016/j.jngse.2016.06.014
    Ji, L. M., Qiu, J. L., Zhang, T. W., et al., 2012. Experiments on Methane Adsorption of Common Clay Minerals in Shale. Earth Science, 37(5): 1043-1050. https://doi.org/10.3799/dqkx.2012.111 (in Chinese with English Abstract)
    Jiang, L., Deng, B., Liu, S. G., et al., 2019. Paleo-Fluid Migration and Conservation Conditions of Shale Gas in Jiaoshiba-Wulong Area. Earth Science, 44(2): 524-538. https://doi.org/10.3799/dqkx.2018.515 (in Chinese with English Abstract)
    Korb, J. P., Nicot, B., Louis-Joseph, A., et al., 2014. Dynamics and Wettability of Oil and Water in Oil Shales. The Journal of Physical Chemistry C, 118(40): 23212-23218. https://doi.org/10.1021/jp508659e
    Lan, Q., Xu, M. X., Binazadeh, M., et al., 2015. A Comparative Investigation of Shale Wettability: The Significance of Pore Connectivity. Journal of Natural Gas Science and Engineering, 27: 1174-1188. https://doi.org/10.1016/j.jngse.2015.09.064
    Lewan, M. D., 1997. Experiments on the Role of Water in Petroleum Formation. Geochimica et Cosmochimica Acta, 61(17): 3691-3723. https://doi.org/10.1016/s0016-7037(97)00176-2
    Li, J., Lu, J., Li, Z., et al., 2014. 'Four-Pore' Modeling and Its Quantitative Logging Description of Shale Gas Reservoir. Oil & Gas Geology, 35(2): 266-271. https://doi.org/10.11743/ogg20140214 (in Chinese with English Abstract)
    Li, P. P., Hao, F., Guo, X. S., et al., 2015. Processes Involved in the Origin and Accumulation of Hydrocarbon Gases in the Yuanba Gas Field, Sichuan Basin, Southwest China. Marine and Petroleum Geology, 59: 150-165. https://doi.org/10.1016/j.marpetgeo.2014.08.003
    Liu, H. L., Wang, H. Y., 2013. Ultra-Low Water Saturation Characteristics and the Identification of Over-Pressured Play Fairways of Marine Shales in South China. Natural Gas Industry, 33(7): 140-144. https://doi.org/10.3787/j.issn.1000-0976.2013.07.025 (in Chinese with English Abstract)
    Lu, J. M., Ruppel, S. C., Rowe, H. D., 2015. Organic Matter Pores and Oil Generation in the Tuscaloosa Marine Shale. AAPG Bulletin, 99(2): 333-357. https://doi.org/10.1306/08201414055
    Modica, C. J., Lapierre, S. G., 2012. Estimation of Kerogen Porosity in Source Rocks as a Function of Thermal Transformation: Example from the Mowry Shale in the Powder River Basin of Wyoming. AAPG Bulletin, 96(1): 87-108. https://doi.org/10.1306/04111110201
    Nie, H., Jin, Z., Zhang, J., 2018. Characteristics of Three Organic Matter Pore Types in the Wufeng-Longmaxi Shale of the Sichuan Basin, Southwest China. Scientific Reports, 8(1): 7014. https://doi.org/10.1038/s41598-018-25104-5
    Passey, Q. R., Creaney, S., Kulla, J. B., et al., 1990. A Practical Model for Organic Richness from Porosity and Resistivity Logs. AAPG Bulletin, 74: 1777-1794. https://doi.org/10.1306/0c9b25c9-1710-11d7-8645000102c1865d
    Pommer, M., Milliken, K., 2015. Pore Types and Pore-Size Distributions across Thermal Maturity, Eagle Ford Formation, Southern Texas. AAPG Bulletin, 99(9): 1713-1744. https://doi.org/10.1306/03051514151
    Ross, D. J. K., Bustin, R. M., 2007. Shale Gas Potential of the Lower Jurassic Gordondale Member, Northeastern British Columbia, Canada. Bulletin of Canadian Petroleum Geology, 55(1): 51-75. https://doi.org/10.2113/gscpgbull.55.1.51
    Ross, D. J. K., Bustin, R. M., 2009. The Importance of Shale Composition and Pore Structure Upon Gas Storage Potential of Shale Gas Reservoirs. Marine and Petroleum Geology, 26(6): 916-927. https://doi.org/10.1016/j.marpetgeo.2008.06.004
    Ruppert, L. F., Sakurovs, R., Blach, T. P., et al., 2013. A USANS/SANS Study of the Accessibility of Pores in the Barnett Shale to Methane and Water. Energy & Fuels, 27(2): 772-779. https://doi.org/10.1021/ef301859s
    Schimmelmann, A., Boudou, J. P., Lewan, M. D., et al., 2001. Experimental Controls on D/H and 13C/12C Ratios of Kerogen, Bitumen and Oil during Hydrous Pyrolysis. Organic Geochemistry, 32(8): 1009-1018. https://doi.org/10.1016/s0146-6380(01)00059-6
    Schimmelmann, A., Lewan, M. D., Wintsch, R. P., 1999. D/H Isotope Ratios of Kerogen, Bitumen, Oil, and Water in Hydrous Pyrolysis of Source Rocks Containing Kerogen Types Ⅰ, Ⅱ, ⅡS, and Ⅲ. Geochimica et Cosmochimica Acta, 63(22): 3751-3766. https://doi.org/10.1016/S0016-7037(99)00221-5
    Shen, C. B., Hu, D., Min, K., et al., 2020. Post-Orogenic Tectonic Evolution of the Jiangnan-Xuefeng Orogenic Belt: Insights from Multiple Geochronometric Dating of the Mufushan Massif, South China. Journal of Earth Science, 31(5): 905-918. https://doi.org/10.1007/s12583-020-1346-2
    Song, D. J., Wu, C. J., Chen, K., et al., 2019. Gas Generation from Marine and Terrestrial Shales by Semi-Closed Pyrolysis Experiments. Earth Science, 44(11): 3639-3652. https://doi.org/10.3799/dqkx.2019.197 (in Chinese with English Abstract)
    Shen, W., Li, X., Cihan, A., et al., 2019. Experimental and Numerical Simulation of Water Adsorption and Diffusion in Shale Gas Reservoir Rocks. Advances in Geo-Energy Research, 3(2): 165-174. https://doi.org/10.26804/ager.2019.02.06
    Tian, Y. D., Li, N., 2007. Affecting Factors of the Coal Adsorbting Methane Capability. Journal of Xi'an University of Science and Technology, 27(2): 247-250. https://doi.org/10.3969/j.issn.1672-9315.2007.02.019 (in Chinese with English Abstract)
    Wang, X. F., Liu, W. H., Xu, Y. C., 2006. Thermal Simulation of the Role of Water in the Evolution of Gaseous Hydrocarbons from Organic Matter. Progress in Natural Science, 16(10): 1275-1281. http://ir.lig.ac.cn/handle/132962/456
    Wang, P. W., Liu, Z. B., Jin, Z. J., et al., 2019. Main Control Factors of Shale Gas Differential Vertical Enrichment in Lower Cambrian Qiongzhusi Formation, Southwest Sichuan Basin, China. Earth Science, 44(11): 3628-3638. https://doi.org/10.3799/dqkx.2019.00 (in Chinese with English Abstract)
    Yang, R., He, S., Yi, J. Z., et al., 2016a. Nano-Scale Pore Structure and Fractal Dimension of Organic-Rich Wufeng-Longmaxi Shale from Jiaoshiba Area, Sichuan Basin: Investigations Using FE-SEM, Gas Adsorption and Helium Pycnometry. Marine and Petroleum Geology, 70: 27-45. https://doi.org/10.1016/j.marpetgeo.2015.11.019
    Yang, R., He, S., Hu, Q. H., et al., 2016b. Pore Characterization and Methane Sorption Capacity of Over-Mature Organic-Rich Wufeng and Longmaxi Shales in the Southeast Sichuan Basin, China. Marine and Petroleum Geology, 77: 247-261. https://doi.org/10.1016/j.marpetgeo.2016.06.001
    Yao, J., Wang, H., Pei, G., et al., 2014. The Formation Mechanism of Upper Paleozoic Tight Sand Gas Reservoirs with Ultra-Low Water Saturation in Eastern Ordos Basin. Natural Gas Industry, 34(1): 37-43. https://doi.org/10.3787/j.issn.1000-0976.2014.01.005 (in Chinese with English Abstract)
    Zhang, H., Kang, Y., Chen, Y., et al., 2005. The Study of Geology Course and Experiment Simulation for Forming Ulter-Low Water Saturation in Tight Sandstones Gas Reservoir. Natural Gas Geoscience, 16(2): 186-189. https://doi.org/10.3969/j.issn.1672-1926.2005.02.011 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views(274) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return