Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 4
Aug 2021
Turn off MathJax
Article Contents
Mutian Qin, Shuyun Xie, Jianbo Zhang, Tianfu Zhang, Emmanuel John M. Carranza, Hongjun Li, Jiayi Ma. Petrophysical Texture Heterogeneity of Vesicles in Andesite Reservoir on Micro-Scales. Journal of Earth Science, 2021, 32(4): 799-808. doi: 10.1007/s12583-021-1409-z
Citation: Mutian Qin, Shuyun Xie, Jianbo Zhang, Tianfu Zhang, Emmanuel John M. Carranza, Hongjun Li, Jiayi Ma. Petrophysical Texture Heterogeneity of Vesicles in Andesite Reservoir on Micro-Scales. Journal of Earth Science, 2021, 32(4): 799-808. doi: 10.1007/s12583-021-1409-z

Petrophysical Texture Heterogeneity of Vesicles in Andesite Reservoir on Micro-Scales

doi: 10.1007/s12583-021-1409-z
More Information
  • Corresponding author: Shuyun Xie, tinaxie@cug.edu.cn
  • Received Date: 23 Aug 2020
  • Accepted Date: 27 Dec 2020
  • Publish Date: 16 Aug 2021
  • It is of great significance to study the spatial distribution patterns and petrophysical complexity of volcanic vesicles which determine whether the reservoir spaces of the volcanic rocks can accumulate oil and gas and enrich high yields or not. In this paper, the digital images of three different textures of vesicular andesite samples, including spherical vesicular andesite, shear deformation vesicular andesite, and secondary filling vesicular andesite, are obtained by microscopic morphology X-CT imaging technology. The spatial micro-vesicle heterogeneity of vesicular andesite samples with different textures is quantitatively analyzed by fractal and multifractal methods such as box-counting dimension and the moment method. It is found that the shear stress weakens the spatial homogeneity since vesicles rupture are accelerated, elongated directionally, and connected with one another under the strain; the secondary filling breaks the vesicles, which significantly enhances the spatial heterogeneity. In addition, shear stress and secondary filling increase the complexity of vesicle microstructures characterized by different fractal and multifractal parameters. These conclusions will provide important theoretical and practical insights into understanding the degassing of volcanic rocks and prediction of high-quality volcanic reservoirs.

     

  • loading
  • Agterberg, F. P., 2001. Multifractal Simulation of Geochemical Map Patterns. Geologic Modeling and Simulation, 26(2): 142-151. https://doi.org/10.1007/978-1-4615-1359-9_17
    Baker, D. R., Mancini, L., Polacci, M., et al., 2012. An Introduction to the Application of X-Ray Microtomography to the Three-Dimensional Study of Igneous Rocks. Lithos, 148: 262-276. https://doi.org/10.1016/j.lithos.2012.06.008
    Barreto, C. J. S., de Lima, E. F., Goldberg, K., 2017. Primary Vesicles, Vesicle-Rich Segregation Structures and Recognition of Primary and Secondary Porosities in Lava Flows from the Paraná Igneous Province, Southern Brazil. Bulletin of Volcanology, 79(4): 1-17. https://doi.org/10.1007/s00445-017-1116-x
    Bird, N., Díaz, M. C., Saa, A., et al., 2006. Fractal and Multifractal Analysis of Pore-Scale Images of Soil. Journal of Hydrology, 322(1/2/3/4): 211-219. https://doi.org/10.1016/j.jhydrol.2005.02.039
    Blower, J. D., Keating, J. P., Mader, H. M., et al., 2001. Inferring Volcanic Degassing Processes from Vesicle Size Distributions. Geophysical Research Letters, 28(2): 347-350. https://doi.org/10.1029/2000gl012188
    Blower, J. D., Keating, J. P., Mader, H. M., et al., 2003. The Evolution of Bubble Size Distributions in Volcanic Eruptions. Journal of Volcanology and Geothermal Research, 120(1/2): 1-23. https://doi.org/10.1016/s0377-0273(02)00404-3
    Boichu, M., Villemant, B., Boudon, G., 2008. A Model for Episodic Degassing of an Andesitic Magma Intrusion. Journal of Geophysical Research Atmospheres, 113(B7): B07202. https://doi.org/10.1029/2007jb005130
    Cai, J. C., Lin, D. L., Singh, H., et al., 2018. Shale Gas Transport Model in 3D Fractal Porous Media with Variable Pore Sizes. Marine and Petroleum Geology, 98: 437-447. https://doi.org/10.1016/j.marpetgeo.2018.08.040
    Cashman, K. V., Mangan, M. T., 1994. Chapter 11b: Physical Aspects of Magmatic Degassing Ⅱ. Constraints on Vesiculation Processes from Textural Studies of Eruptive Products. In: Carroll, M. R., Holloway, J. R., eds., Volatiles in Magmas. De Gruyter, Berlin, Boston. 447-478. https://doi.org/10.1515/9781501509674-018
    Chen, X. J., Yao, G. Q., Cai, J. C., et al., 2017. Fractal and Multifractal Analysis of Different Hydraulic Flow Units Based on Micro-CT Images. Journal of Natural Gas Science and Engineering, 48: 145-156. https://doi.org/10.1016/j.jngse.2016.11.048
    Clarkson, C. R., Solano, N., Bustin, R. M., et al., 2013. Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS, Gas Adsorption, and Mercury Intrusion. Fuel, 103: 606-616. https://doi.org/10.1016/j.fuel.2012.06.119
    Colombier, M., Wadsworth, F. B., Gurioli, L., et al., 2017. The Evolution of Pore Connectivity in Volcanic Rocks. Earth and Planetary Science Letters, 462: 99-109. https://doi.org/10.1016/j.epsl.2017.01.011
    Davydov, M. N., 2012. Nucleation and Growth of a Gas Bubble in Magma. Journal of Applied Mechanics and Technical Physics, 53(3): 324-332. https://doi.org/10.1134/s0021894412030030
    Degruyter, W., Bachmann, O., Burgisser, A., 2009. Controls on Magma Permeability in the Volcanic Conduit during the Climactic Phase of the Kos Plateau Tuff Eruption (Aegean Arc). Bulletin of Volcanology, 72(1): 63-74. https://doi.org/10.1007/s00445-009-0302-x
    Evertsz, C. J. G., Mandelbrot, B. B., 1992. Multifractal Measures (Appendix B). In: Peitgen, H. -O., Jurgens, H., Saupe, D., eds., Chaos and Fractals. Springer Verlag, New York. 922-953
    Farquharson, J. I., Heap, M. J., Baud, P., 2016. Strain-Induced Permeability Increase in Volcanic Rock. Geophysical Research Letters, 43(22): 11603-11610. https://doi.org/10.1002/2016gl071540
    Farquharson, J., Heap, M. J., Varley, N. R., et al., 2015. Permeability and Porosity Relationships of Edifice-Forming Andesites: A Combined Field and Laboratory Study. Journal of Volcanology and Geothermal Research, 297: 52-68. https://doi.org/10.1016/j.jvolgeores.2015.03.016
    Ferreira, T. R., Pires, L. F., Wildenschild, D., et al., 2018. X-Ray Microtomography Analysis of Lime Application Effects on Soil Porous System. Geoderma, 324: 119-130. https://doi.org/10.1016/j.geoderma.2018.03.015
    Ferreiro, J. P., Miranda, J. G. V., Vidal Vázquez, E., 2010. Multifractal Analysis of Soil Porosity Based on Mercury Injection and Nitrogen Adsorption. Vadose Zone Journal, 9(2): 325-335. https://doi.org/10.2136/vzj2009.0090
    García-Gutiérrez, C., San José Martínez, F., Caniego, J., 2017. A Protocol for Fractal Studies on Porosity of Porous Media: High Quality Soil Porosity Images. Journal of Earth Science, 28(5): 888-896. https://doi.org/10.1007/s12583-017-0777-x
    Ge, X. M., Fan, Y. R., Zhu, X. J., et al., 2015. Determination of Nuclear Magnetic Resonance T2 Cutoff Value Based on Multifractal Theory—An Application in Sandstone with Complex Pore Structure. Geophysics, 80(1): D11-D21. https://doi.org/10.1190/geo2014-0140.1
    Giachetti, T., Druitt, T. H., Burgisser, A., et al., 2010. Bubble Nucleation, Growth and Coalescence during the 1997 Vulcanian Explosions of Soufrière Hills Volcano, Montserrat. Journal of Volcanology and Geothermal Research, 193(3/4): 215-231. https://doi.org/10.1016/j.jvolgeores.2010.04.001
    Halsey, T. C., Jensen, M. H., Kadanoff, L. P., et al., 1987. Fractal Measures and Their Singularities: The Characterization of Strange Sets. Nuclear Physics B—Proceedings Supplements, 2: 501-511 http://www.ncbi.nlm.nih.gov/pubmed/9896729
    Houston, A. N., Otten, W., Falconer, R., et al., 2017. Quantification of the Pore Size Distribution of Soils: Assessment of Existing Software Using Tomographic and Synthetic 3D Images. Geoderma, 299: 73-82. https://doi.org/10.1016/j.geoderma.2017.03.025
    Klug, C., Cashman, K. V., Bacon, C. R., 2002. Structure and Physical Characteristics of Pumice from the Climactic Eruption of Mount Mazama (Crater Lake), Oregon. Bulletin of Volcanology, 64(7): 486-501. https://doi.org/10.1007/s00445-002-0230-5
    Krohn, C. E., 1988. Fractal Measurements of Sandstones, Shales, and Carbonates. Journal of Geophysical Research Atmospheres, 93(B4): 3297-3305. https://doi.org/10.1029/jb093ib04p03297
    Kushnir, A. R. L., Martel, C., Champallier, R., et al., 2017. In situ Confirmation of Permeability Development in Shearing Bubble-Bearing Melts and Implications for Volcanic Outgassing. Earth and Planetary Science Letters, 458: 315-326. https://doi.org/10.1016/j.epsl.2016.10.053
    Lai, J., Wang, G. W., Wang, Z. Y., et al., 2018. A Review on Pore Structure Characterization in Tight Sandstones. Earth-Science Reviews, 177: 436-457. https://doi.org/10.1016/j.earscirev.2017.12.003
    Le Gall, N., Pichavant, M., 2016. Experimental Simulation of Bubble Nucleation and Magma Ascent in Basaltic Systems: Implications for Stromboli Volcano. American Mineralogist, 101(9): 1967-1985. https://doi.org/10.2138/am-2016-5639
    Li, P., Zheng, M., Bi, H., et al., 2017. Pore Throat Structure and Fractal Characteristics of Tight Oil Sandstone: A Case Study in the Ordos Basin, China. Journal of Petroleum Science and Engineering, 149: 665-674. https://doi.org/10.1016/j.petrol.2016.11.015
    Liu, D. K., Gu, Z. L., Liang, R. X., et al., 2020. Impacts of Pore-Throat System on Fractal Characterization of Tight Sandstones. Geofluids, 2020: 1-17. https://doi.org/10.1155/2020/4941501
    Lyu, C., Cheng, Q. M., Zuo, R. G., et al., 2017. Mapping Spatial Distribution Characteristics of Lineaments Extracted from Remote Sensing Image Using Fractal and Multifractal Models. Journal of Earth Science, 28(3): 507-515. https://doi.org/10.1007/s12583-016-0914-x
    Mandelbrot, B. B., 1977. Fractals: Form, Chance and Dimension. Freeman, San Francisco. https://doi.org/10.1017/s0001924000090862
    Manga, M., Castro, J., Cashman, K. V., et al., 1998. Rheology of Bubble-Bearing Magmas. Journal of Volcanology and Geothermal Research, 87(1/2/3/4): 15-28. https://doi.org/10.1016/s0377-0273(98)00091-2
    Mongrain, J., Larsen, J. F., King, P. L., 2008. Rapid Water Exsolution, Degassing, and Bubble Collapse Observed Experimentally in K-Phonolite Melts. Journal of Volcanology and Geothermal Research, 173(3/4): 178-184. https://doi.org/10.1016/j.jvolgeores.2008.01.026
    Namiki, A., Manga, M., 2006. Influence of Decompression Rate on the Expansion Velocity and Expansion Style of Bubbly Fluids. Journal of Geophysical Research: Solid Earth, 111(B11): 17. https://doi.org/10.1029/2005jb004132
    Okumura, S., Kushnir, A. R. L., Martel, C., et al., 2016. Rheology of Crystal-Bearing Natural Magmas: Torsional Deformation Experiments at 800 ℃ and 100 MPa. Journal of Volcanology and Geothermal Research, 328: 237-246. https://doi.org/10.1016/j.jvolgeores.2016.11.009
    Okumura, S., Nakamura, M., Tsuchiyama, A., et al., 2008. Evolution of Bubble Microstructure in Sheared Rhyolite: Formation of a Channel-Like Bubble Network. Journal of Geophysical Research Atmospheres, 113(B7): B07208. https://doi.org/10.1029/2007jb005362
    Orsi, G., Gallo, G., Heiken, G., et al., 1992. A Comprehensive Study of Pumice Formation and Dispersal: The Cretaio Tephra of Ischia (Italy). Journal of Volcanology and Geothermal Research, 53(1/2/3/4): 329-354. https://doi.org/10.1016/0377-0273(92)90090-Z
    Papale, P., Neri, A., Macedonio, G., 1998. The Role of Magma Composition and Water Content in Explosive Eruptions: 1. Conduit Ascent Dynamics. Journal of Volcanology and Geothermal Research, 87(1/2/3/4): 75-93. https://doi.org/10.1016/s0377-0273(98)00101-2
    Parmigiani, A., Degruyter, W., Leclaire, S., et al., 2017. The Mechanics of Shallow Magma Reservoir Outgassing. Geochemistry, Geophysics, Geosystems, 18(8): 2887-2905. https://doi.org/10.1002/2017gc006912
    Pioli, L., Azzopardi, B. J., Bonadonna, C., et al., 2017. Outgassing and Eruption of Basaltic Magmas: The Effect of Conduit Geometry. Geology, 45(8): 759-762. https://doi.org/10.1130/g38787.1
    Pistone, M., Caricchi, L., Fife, J. L., et al., 2015. In situ X-Ray Tomographic Microscopy Observations of Vesiculation of Bubble-Free and Bubble-Bearing Magmas. Bulletin of Volcanology, 77(12): 1-15. https://doi.org/10.1007/s00445-015-0992-1
    Pistone, M., Whittington, A. G., Andrews, B. J., et al., 2017. Crystal-Rich Lava Dome Extrusion during Vesiculation: An Experimental Study. Journal of Volcanology and Geothermal Research, 347: 1-14. https://doi.org/10.1016/j.jvolgeores.2017.06.018
    Prodanović, M., Lindquist, W. B., Seright, R. S., 2007.3D Image-Based Characterization of Fluid Displacement in a Berea Core. Advances in Water Resources, 30(2): 214-226. https://doi.org/10.1016/j.advwatres.2005.05.015
    Rahner, M. S., Halisch, M., Peres Fernandes, C., et al., 2018. Fractal Dimensions of Pore Spaces in Unconventional Reservoir Rocks Using X-Ray Nano- and Micro-Computed Tomography. Journal of Natural Gas Science and Engineering, 55: 298-311. https://doi.org/10.1016/j.jngse.2018.05.011
    Shields, J. K., Mader, H. M., Pistone, M., et al., 2014. Strain-Induced Outgassing of Three-Phase Magmas during Simple Shear. Journal of Geophysical Research: Solid Earth, 119(9): 6936-6957. https://doi.org/10.1002/2014jb011111
    Spina, L., Morgavi, D., Costa, A., et al., 2019. Gas Mobility in Rheologically-Layered Volcanic Conduits: The Role of Decompression Rate and Crystal Content on the Ascent Dynamics of Magmas. Earth and Planetary Science Letters, 524: 115732. https://doi.org/10.1016/j.epsl.2019.115732
    Tarquis, A. M., Heck, R. J., Andina, D., et al., 2009. Pore Network Complexity and Thresholding of 3D Soil Images. Ecological Complexity, 6(3): 230-239. https://doi.org/10.1016/j.ecocom.2009.05.010
    Toramaru, A., 1995. Numerical Study of Nucleation and Growth of Bubbles in Viscous Magmas. Journal of Geophysical Research: Solid Earth, 100(B2): 1913-1931. https://doi.org/10.1029/94jb02775
    Turcotte, D. L., 1989. Fractals in Geology and Geophysics. Pure and Applied Geophysics, 131(1/2): 171-196. https://doi.org/10.1007/BF00874486
    Vona, A., Ryan, A. G., Russell, J. K., et al., 2016. Models for Viscosity and Shear Localization in Bubble-Rich Magmas. Earth and Planetary Science Letters, 449: 26-38. https://doi.org/10.1016/j.epsl.2016.05.029
    Wang, F. Y., Jiao, L., Lian, P. Q., et al., 2019. Apparent Gas Permeability, Intrinsic Permeability and Liquid Permeability of Fractal Porous Media: Carbonate Rock Study with Experiments and Mathematical Modelling. Journal of Petroleum Science and Engineering, 173: 1304-1315. https://doi.org/10.1016/j.petrol.2018.10.095
    Wang, F. Y., Lian, P. Q., Jiao, L., et al., 2018. Fractal Analysis of Microscale and Nanoscale Pore Structures in Carbonates Using High-Pressure Mercury Intrusion. Geofluids, 1: 1-15. https://doi.org/10.1155/2018/4023150
    Wright, H. M. N., Cashman, K. V., Gottesfeld, E. H., et al., 2009. Pore Structure of Volcanic Clasts: Measurements of Permeability and Electrical Conductivity. Earth and Planetary Science Letters, 280(1/2/3/4): 93-104. https://doi.org/10.1016/j.epsl.2009.01.023
    Xia, Y. X., Cai, J. C., Perfect, E., et al., 2019. Fractal Dimension, Lacunarity and Succolarity Analyses on CT Images of Reservoir Rocks for Permeability Prediction. Journal of Hydrology, 579: 124198. https://doi.org/10.1016/j.jhydrol.2019.124198
    Xie, S. Y., Cheng, Q. M., Ling, Q. C., et al., 2010. Fractal and Multifractal Analysis of Carbonate Pore-Scale Digital Images of Petroleum Reservoirs. Marine and Petroleum Geology, 27(2): 476-485. https://doi.org/10.1016/j.marpetgeo.2009.10.010
    Yang, F., Ning, Z. F., Liu, H. Q., 2014. Fractal Characteristics of Shales from a Shale Gas Reservoir in the Sichuan Basin, China. Fuel, 115: 378-384. https://doi.org/10.1016/j.fuel.2013.07.040
    Yang, Z. Y., Pourghasemi, H. R., Lee, Y. H., 2016. Fractal Analysis of Rainfall-Induced Landslide and Debris Flow Spread Distribution in the Chenyulan Creek Basin, Taiwan. Journal of Earth Science, 27(1): 151-159. https://doi.org/10.1007/s12583-016-0633-4
    Yin, L. R., Li, X. L., Zheng, W. F., et al., 2019. Fractal Dimension Analysis for Seismicity Spatial and Temporal Distribution in the Circum-Pacific Seismic Belt. Journal of Earth System Science, 128(1): 1-7. https://doi.org/10.1007/s12040-018-1040-2
    Yu, B. M., 2006. Fractal Dimensions for Multiphase Fractal Media. Fractals, 14(2): 111-118. https://doi.org/10.1142/s0218348x06003155
    Zheng, Q. H., You, J. Y., 2019. Hydrocarbon Accumulation Characteristics of Cretaceous Volcanic Rocks in Wangguantun Tectonic Zone, Huanghua Depression. Lithologic Reservoirs, 31(5): 44-51 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YANX201905005.htm
    Zhou, L. H., Qin, M. T., Xiao, D. Q., et al., 2021. Multi-Scaling Properties of 2D Reservoir Micro-Pore Heterogeneity Based on Digital Casting Thin-Section Images. Natural Resources Research, 30(1): 359-370. https://doi.org/10.1007/s11053-020-09747-8
    Zhou, W. D., Xie, S. Y., Bao, Z. Y., et al., 2019. Chemical Compositions and Distribution Characteristics of Cements in Longmaxi Formation Shales, Southwest China. Journal of Earth Sciences, 30(5): 879-892. https://doi.org/10.1007/s12583-019-1013-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views(299) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return