Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 1
Feb 2022
Turn off MathJax
Article Contents
Yong Fu, Fuliang Wang, Chuan Guo, Chao Li, Peng Xia. Re-Os Geochronology of the Liuchapo Formation across the Ediacaran-Cambrian Boundary of the Yangtze Block (South China). Journal of Earth Science, 2022, 33(1): 25-35. doi: 10.1007/s12583-021-1473-4
Citation: Yong Fu, Fuliang Wang, Chuan Guo, Chao Li, Peng Xia. Re-Os Geochronology of the Liuchapo Formation across the Ediacaran-Cambrian Boundary of the Yangtze Block (South China). Journal of Earth Science, 2022, 33(1): 25-35. doi: 10.1007/s12583-021-1473-4

Re-Os Geochronology of the Liuchapo Formation across the Ediacaran-Cambrian Boundary of the Yangtze Block (South China)

doi: 10.1007/s12583-021-1473-4
More Information
  • Corresponding author: Yong Fu, byez1225@126.com
  • Received Date: 23 Dec 2020
  • Accepted Date: 20 Apr 2021
  • Publish Date: 28 Feb 2022
  • The Ediacaran-Cambrian (E-C) succession in South China records remarkable oceanic, biological and geochemical variations, but it was not well defined geochronologically, which hinders the interpretation of the spatio-temporal seawater chemical architecture during the time E-C interval. This study presents two Re-Os isochron ages of 520.2±6.1 and 561.7±8.5 Ma for the barite-rich black shales from the top Liuchapo and Doushantuo formations respectively in Tianzhu County, Guizhou Province. In combination with existing age data, the two new Re-Os isochron ages suggest that the Liuchapo Formation was deposited between 550 and 520 Ma. Moreover, like the polymetallic Ni-Mo-PGE layers of shelf margin (or platform) facies and V-rich horizons of transitional (or shelf slope) to deep-water facies, the barite deposits were likely formed due to differential mineralization. The timing offset likely resulted from differential elemental concentration related to certain local factors (i.e., hydrothermal fluids, seawater redox and biological activity). The isochron-derived initial 187Os/188Os ratios of the top Liuchapo Formation (0.902±0.048) and the Doushantuo Formation (0.740±0.042) fall within the range of continental weathering flux (1.54) and oceanic crust (0.126), implying the involvement of marine hydrothermal fluids. Moreover, their difference of initial 187Os/188Os ratios may reflect variations of continental weathering intensity and uplift magnitude.

     

  • Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
  • loading
  • An, Z. H., Jiang, G. Q., Tong, J. N., et al., 2015. Stratigraphic Position of the Ediacaran Miaohe Biota and Its Constrains on the Age of the Upper Doushantuo δ13C Anomaly in the Yangtze Gorges Area, South China. Precambrian Research, 271: 243-253. https://doi.org/10.1016/j.precamres.2015.10.007
    Charvet, J., 2013. The Neoproterozoic-Early Paleozoic Tectonic Evolution of the South China Block: An Overview. Journal of Asian Earth Sciences, 74: 198-209. https://doi.org/10.1016/j.jseaes.2013.02.015
    Chen, C., Feng, Q., Gan, Z., 2020. Zircon U-Pb Ages and its Geological Significance of Tuffs between the Doushantuo and Liuchapo Formaion at Yangtou Section, Guizhou Province. Earth Science, 45(3): 880-891. https://doi.org/10.3799/dqkx.2019.103 (in Chinese with English Abstract)
    Chen, D. Z., Wang, J. G., Qing, H. R., et al., 2009. Hydrothermal Venting Activities in the Early Cambrian, South China: Petrological, Geochronological and Stable Isotopic Constraints. Chemical Geology, 258(3/4): 168-181. https://doi.org/10.1016/j.chemgeo.2008.10.016
    Chen, D. Z., Zhou, X. Q., Fu, Y., et al., 2015. New U-Pb Zircon Ages of the Ediacaran-Cambrian Boundary Strata in South China. Terra Nova, 27(1): 62-68. https://doi.org/10.1111/ter.12134
    Cohen, A. S., 2004. The rhenium-Osmium Isotope System: Applications to Geochronological and Palaeoenvironmental Problems. Journal of the Geological Society, 161(4): 729-734. http://dx.doi.org/10.1144/0016-764903-084
    Cohen, A. S., Coe, A. L., Bartlett, J. M., et al., 1999. Precise Re-Os Ages of Organic-Rich Mudrocks and the Os Isotope Composition of Jurassic Seawater. Earth and Planetary Science Letters, 167(3/4): 159-173. https://doi.org/10.1016/s0012-821x(99)00026-6
    Condon, D., Zhu, M. Y., Bowring, S., et al., 2005. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 308(5718): 95-98. https://doi.org/10.1126/science.1107765
    Dickson, A. J., Cohen, A. S., Coe, A. L., et al., 2015. Evidence for Weathering and Volcanism during the PETM from Arctic Ocean and Peri-Tethys Osmium Isotope Records. Palaeogeography, Palaeoclimatology, Palaeoecology, 438: 300-307. https://doi.org/10.1016/j.palaeo.2015.08.019
    Ding, Y., Chen, D. Z., Zhou, X. Q., et al., 2019. Tectono-Depositional Pattern and Evolution of the Middle Yangtze Platform (South China) during the Late Ediacaran. Precambrian Research, 333: 105426. https://doi.org/10.1016/j.precamres.2019.105426
    Du Vivier, A. D. C., Selby, D., Sageman, B. B., et al., 2014. Marine 187Os/188Os Isotope Stratigraphy Reveals the Interaction of Volcanism and Ocean Circulation during Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 389: 23-33. https://doi.org/10.1016/j.epsl.2013.12.024
    Erwin, D. H., Laflamme, M., Tweedt, S. M., et al., 2011. The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals. Science, 334(6059): 1091-1097. https://doi.org/10.1126/science.1206375
    Feng, L. J., Li, C., Huang, J., et al., 2014. A Sulfate Control on Marine Mid-Depth Euxinia on the Early Cambrian (ca. 529-521 Ma) Yangtze Platform, South China. Precambrian Research, 246: 123-133. https://doi.org/10.1016/j.precamres.2014.03.002
    Finlay, A. J., Selby, D., Gröcke, D. R., 2010. Tracking the Hirnantian Glaciation Using Os Isotopes. Earth and Planetary Science Letters, 293(3/4): 339-348. https://doi.org/10.1016/j.epsl.2010.02.049
    Fu, Y., Dong, L., Li, C., et al., 2016. New Re-Os Isotopic Constrains on the Formation of the Metalliferous Deposits of the Lower Cambrian Niutitang Formation. Journal of Earth Science, 27(2): 271-281. https://doi.org/10.1007/s12583-016-0606-7
    Halverson, G. P., Dudás, F. Ö., Maloof, A. C., et al., 2007. Evolution of the 87Sr/86Sr Composition of Neoproterozoic Seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3/4): 103-129. https://doi.org/10.1016/j.palaeo.2007.02.028
    Halverson, G. P., Shields-Zhou, G., 2011. Chapter 4 Chemostratigraphy and the Neoproterozoic Glaciations. In: Arnaud, E., Halverson, G.P., Shields-Zhou, G., eds., The Geological Record of Neoproterozoic Glaciations. Geological Society, London, Memoirs, 36(1): 51-66. https://doi.org/10.1144/m36.4
    Han, T., Fan, H. F., Zhu, X. Q., et al., 2017. Submarine Hydrothermal Contribution for the Extreme Element Accumulation during the Early Cambrian, South China. Ore Geology Reviews, 86: 297-308. https://doi.org/10.1016/j.oregeorev.2017.02.030
    Hannah, J. L., Bekker, A., Stein, H. J., et al., 2004. Primitive Os and 2 316 Ma Age for Marine Shale: Implications for Paleoproterozoic Glacial Events and the Rise of Atmospheric Oxygen. Earth and Planetary Science Letters, 225(1/2): 43-52. https://doi.org/10.1016/j.epsl.2004.06.013
    Huang, T. Y., Chen, D. Z., Ding, Y., et al., 2020. SIMS U-Pb Zircon Geochronological and Carbon Isotope Chemostratigraphic Constraints on the Ediacaran-Cambrian Boundary Succession in the Three Gorges Area, South China. Journal of Earth Science, 31(1): 69-78. https://doi.org/10.1007/s12583-019-1233-x
    Huang, T. Y., Chen, D. Z., Fu, Y., et al., 2019. Development and Evolution of a Euxinic Wedge on the Ferruginous Outer Shelf of the Early Cambrian Yangtze Sea. Chemical Geology, 524: 259-271. https://doi.org/10.1016/j.chemgeo.2019.06.024
    Jenkins, R. J. F., Cooper, J. A., Compston, W., 2002. Age and Biostratigraphy of Early Cambrian Tuffs from SE Australia and Southern China. Journal of the Geological Society, 159(6): 645-658. https://doi.org/10.1144/0016-764901-127
    Jiang, G. Q., Shi, X. Y., Zhang, S. H., et al., 2011. Stratigraphy and Paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) in South China. Gondwana Research, 19(4): 831-849. https://doi.org/10.1016/j.gr.2011.01.006
    Jiang, G. Q., Sohl, L. E., Christie-Blick, N., 2003. Neoproterozoic Stratigraphic Comparison of the Lesser Himalaya (India) and Yangtze Block (South China): Paleogeographic Implications. Geology, 31(10): 917-920. https://doi.org/10.1130/g19790.1
    Jiang, S. Y., Pi, D. H., Heubeck, C., et al., 2009. Early Cambrian Ocean Anoxia in South China. Nature, 459(7248): E5-E6; Discussion E6. https://doi.org/10.1038/nature08048
    Kendall, B., Creaser, R. A., Selby, D., 2006. Re-Os Geochronology of Postglacial Black Shales in Australia: Constraints on the Timing of "Sturtian" Glaciation. Geology, 34(9): 729-732. https://doi.org/10.1130/g22775.1
    Kendall, B., Creaser, R. A., Selby, D., 2009. 187Re-187Os Geochronology of Precambrian Organic-Rich Sedimentary Rocks. Geological Society, London, Special Publications, 326(1): 85-107. https://doi.org/10.1144/sp326.5
    Levasseur, S., Birck, J. L., Allègre, C. J., 1998. Direct Measurement of Femtomoles of Osmium and the 187Os/186Os Ratio in Seawater. Science, 282(5387): 272-274. https://doi.org/10.1126/science.282.5387.272
    Levasseur, S., Birck, J. L., Allègre, C. J., 1999. The Osmium Riverine Flux and the Oceanic Mass Balance of Osmium. Earth and Planetary Science Letters, 174(1/2): 7-23. https://doi.org/10.1016/s0012-821x(99)00259-9
    Li, C., Love, G. D., Lyons, T. W., et al., 2010a. A Stratified Redox Model for the Ediacaran Ocean. Science, 328(5974): 80-83. https://doi.org/10.1126/science.1182369
    Li, C., Qu, W. J., Zhou, L. M., et al., 2010b. Rapid Separation of Osmium by Direct Distillation with Carius Tube. Rock and Mineral Analysis, 29(1): 14-16. https://doi.org/10.15898/j.cnki.11-2131/td.2010.01.001 (in Chinese with English Abstract)
    Li, C., Shi, W., Cheng, M., et al., 2020. The Redox Structure of Ediacaran and Early Cambrian Oceans and Its Controls. Science Bulletin, 65(24): 2141-2149. https://doi.org/10.1016/j.scib.2020.09.023
    Li, S. R., Xiao, Q. Y., Shen, J. F., et al., 2003. Rhenium-Osmium Isotope Constraints on the Age and Source of the Platinum Mineralization in the Lower Cambrian Black Rock Series of Hunan-Guizhou Provinces, China. Science in China Series D: Earth Sciences, 46(9): 919-927. https://doi.org/10.1360/01yd0277
    Liu, Z. Q., Jiang, X. J., Li, C., et al., 2021. Metallogenic Age and Setting of Boka Gold Deposit Dongchuan: Evidence from Re-Os Isotope of Sulfide and Trace Element of Carbonaceous Slate. Earth Science, 46(12): 4260-4273. https://doi.org/10.3799/dqkx.2021.178 (in Chinese with English Abstract)
    Liu, Z. Y., Selby, D., Zhang, H., et al., 2020. Evidence for Volcanism and Weathering during the Permian-Triassic Mass Extinction from Meishan (South China) Osmium Isotope Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 553: 109790. https://doi.org/10.1016/j.palaeo.2020.109790
    Mao, J. W., Lehmann, B., Du, A. D., et al., 2002. Re-Os Dating of Polymetallic Ni-Mo-PGE-Au Mineralization in Lower Cambrian Black Shales of South China and Its Geologic Significance. Economic Geology, 97(5): 1051-1061. https://doi.org/10.2113/gsecongeo.97.5.1051
    Matsumoto, H., Kuroda, J., Coccioni, R., et al., 2020. Marine Os Isotopic Evidence for Multiple Volcanic Episodes during Cretaceous Oceanic Anoxic Event 1b. Scientific Reports, 10(1): 12601. https://doi.org/10.1038/s41598-020-69505-x
    McDaniel, D. K., Walker, R. J., Hemming, S. R., et al., 2004. Sources of Osmium to the Modern Oceans: New Evidence from the 190Pt-186Os System. Geochimica et Cosmochimica Acta, 68(6): 1243-1252. https://doi.org/10.1016/j.gca.2003.08.020
    Oxburgh, R., 1998. Variations in the Osmium Isotope Composition of Sea Water over the Past 200 000 Years. Earth and Planetary Science Letters, 159(3/4): 183-191. https://doi.org/10.1016/s0012-821x(98)00057-0
    Peucker-Ehrenbrink, B., Ravizza, G., 2000. The Marine Osmium Isotope Record. Terra Nova, 12(5): 205-219. https://doi.org/10.1046/j.1365-3121.2000.00295.x
    Ravizza, G., Peucker-Ehrenbrink, B., 2003. Chemostratigraphic Evidence of Deccan Volcanism from the Marine Osmium Isotope Record. Science, 302(5649): 1392-1395. https://doi.org/10.1126/science.1089209
    Rooney, A. D., Chew, D. M., Selby, D., 2011. Re-Os Geochronology of the Neoproterozoic-Cambrian Dalradian Supergroup of Scotland and Ireland: Implications for Neoproterozoic Stratigraphy, Glaciations and Re-Os Systematics. Precambrian Research, 185(3/4): 202-214. https://doi.org/10.1016/j.precamres.2011.01.009
    Rooney, A. D., Macdonald, F. A., Strauss, J. V., et al., 2014. Re-Os Geochronology and Coupled Os-Sr Isotope Constraints on the Sturtian Snowball Earth. Proceedings of the National Academy of Sciences of the United States of America, 111(1): 51-56. https://doi.org/10.1073/pnas.1317266110
    Rooney, A. D., Selby, D., Houzay, J. P., et al., 2010. Re-Os Geochronology of a Mesoproterozoic Sedimentary Succession, Taoudeni Basin, Mauritania: Implications for Basin-Wide Correlations and Re-Os Organic-Rich Sediments Systematics. Earth and Planetary Science Letters, 289(3/4): 486-496. https://doi.org/10.1016/j.epsl.2009.11.039
    Rotich, E. K., Handler, M. R., Naeher, S., et al., 2020. Re-Os Geochronology and Isotope Systematics, and Organic and Sulfur Geochemistry of the Middle-Late Paleocene Waipawa Formation, New Zealand: Insights into Early Paleogene Seawater Os Isotope Composition. Chemical Geology, 536: 119473. https://doi.org/10.1016/j.chemgeo.2020.119473
    Sawaki, Y., Ohno, T., Tahata, M., et al., 2010. The Ediacaran Radiogenic Sr Isotope Excursion in the Doushantuo Formation in the Three Gorges Area, South China. Precambrian Research, 176(1/2/3/4): 46-64. https://doi.org/10.1016/j.precamres.2009.10.006
    Sharma, M., Wasserburg, G. J., 1997. Osmium in the Rivers. Geochimica et Cosmochimica Acta, 61(24): 5411-5416. https://doi.org/10.1016/s0016-7037(97)00329-3
    Shi, C. H., Cao, J., Han, S. C., et al., 2021. A Review of Polymetallic Mineralization in Lower Cambrian Black Shales in South China: Combined Effects of Seawater, Hydrothermal Fluids, and Biological Activity. Palaeogeography, Palaeoclimatology, Palaeoecology, 561: 110073. https://doi.org/10.1016/j.palaeo.2020.110073
    Stein, R., 1990. Organic Carbon Content/Sedimentation Rate Relationship and Its Paleoenvironmental Significance for Marine Sediments. Geo-Marine Letters, 10(1): 37-44. https://doi.org/10.1007/bf02431020
    Sun, P. C., Li, C., Zhou, L. M., et al., 2021. Dating Metallogenic Age of Jinding Pb-Zn Deposit in Yunnan: Evidence from Re-Os Isotope of Bitumen. Earth Science, 46(12): . 4247-4259. https://doi.org/10.3799/dqkx.2021.085
    Tripathy, G. R., Singh, S. K., 2015. Re-Os Depositional Age for Black Shales from the Kaimur Group, Upper Vindhyan, India. Chemical Geology, 413: 63-72. https://doi.org/10.1016/j.chemgeo.2015.08.011
    Turgeon, S. C., Creaser, R. A., Algeo, T. J., 2007. Re-Os Depositional Ages and Seawater Os Estimates for the Frasnian-Famennian Boundary: Implications for Weathering Rates, Land Plant Evolution, and Extinction Mechanisms. Earth and Planetary Science Letters, 261(3/4): 649-661. https://doi.org/10.1016/j.epsl.2007.07.031
    Wang, J., Li, Z. X., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-up. Precambrian Research, 122(1/2/3/4): 141-158. https://doi.org/10.1016/s0301-9268(02)00209-7
    Wang, W., Zhou, M. Z., Chu, Z. Y., et al., 2020. Constraints on the Ediacaran-Cambrian Boundary in Deep-Water Realm in South China: Evidence from Zircon CA-ID-TIMS U-Pb Ages from the Topmost Liuchapo Formation. Science China Earth Sciences, 63(8): 1176-1187. https://doi.org/10.1007/s11430-019-9590-0
    Wang, X. Q., Shi, X. Y., Jiang, G. Q., et al., 2012. New U-Pb Age from the Basal Niutitang Formation in South China: Implications for Diachronous Development and Condensation of Stratigraphic Units across the Yangtze Platform at the Ediacaran-Cambrian Transition. Journal of Asian Earth Sciences, 48: 1-8. https://doi.org/10.1016/j.jseaes.2011.12.023
    Wang, Y., Huang, Z. Q., Chen, H. D., et al., 2012. Stratigraphical Correlation of the Liuchapo Formation with the Dengying Formation in South China. Journal of Jilin University (Earth Science Edition), 42(S1): 328-335. https://doi.org/10.13278/j.cnki.jjuese.2012.s1.049 (in Chinese with English Abstract)
    Wei, S. C., Fu, Y., Liang, H. P., et al., 2018. Re-Os Geochronology of the Cambrian Stage-2 and -3 Boundary in Zhijin County, Guizhou Province, China. Acta Geochimica, 37(2): 323-333. https://doi.org/10.1007/s11631-017-0228-5
    Xu, L. G., Lehmann, B., Mao, J. W., et al., 2011. Re-Os Age of Polymetallic Ni-Mo-PGE-Au Mineralization in Early Cambrian Black Shales of South China-A Reassessment. Economic Geology, 106(3): 511-522. https://doi.org/10.2113/econgeo.106.3.511
    Yamashita, Y., Takahashi, Y., Haba, H., et al., 2007. Comparison of Reductive Accumulation of Re and Os in Seawater-Sediment Systems. Geochimica et Cosmochimica Acta, 71(14): 3458-3475. https://doi.org/10.1016/j.gca.2007.05.003
    Yang, C., Zhu, M. Y., Condon, D. J., et al., 2017. Geochronological Constraints on Stratigraphic Correlation and Oceanic Oxygenation in Ediacaran-Cambrian Transition in South China. Journal of Asian Earth Sciences, 140: 75-81. https://doi.org/10.1016/j.jseaes.2017.03.017
    Yang, G., Hannah, J. L., Zimmerman, A., et al., 2009. Re-Os Depositional Age for Archean Carbonaceous Slates from the Southwestern Superior Province: Challenges and Insights. Earth and Planetary Science Letters, 280(1/2/3/4): 83-92. https://doi.org/10.1016/j.epsl.2009.01.019
    Zhao, G. C., Wang, Y. J., Huang, B. C., et al., 2018. Geological Reconstructions of the East Asian Blocks: From the Breakup of Rodinia to the Assembly of Pangea. Earth-Science Reviews, 186: 262-286. https://doi.org/10.1016/j.earscirev.2018.10.003
    Zhou, C. M., Yuan, X. L., Xiao, S. H., et al., 2019. Ediacaran Integrative Stratigraphy and Timescale of China. Science China Earth Sciences, 62(1): 7-24. https://doi.org/10.1007/s11430-017-9216-2
    Zhou, M. Z., Luo, T. Y., Huff, W. D., et al., 2018. Timing the Termination of the Doushantuo Negative Carbon Isotope Excursion: Evidence from U-Pb Ages from the Dengying and Liuchapo Formations, South China. Science Bulletin, 63(21): 1431-1438. https://doi.org/10.1016/j.scib.2018.10.002
    Zhu, B., Becker, H., Jiang, S. Y., et al., 2013. Re-Os Geochronology of Black Shales from the Neoproterozoic Doushantuo Formation, Yangtze Platform, South China. Precambrian Research, 225: 67-76. https://doi.org/10.1016/j.precamres.2012.02.002
    Zhu, M. Y., Yang, A. H., Yuan, J. L., et al., 2019. Cambrian Integrative Stratigraphy and Timescale of China. Science China Earth Sciences, 62(1): 25-60. https://doi.org/10.1007/s11430-017-9291-0
    Zhu, M., Zhuravlev, A. Y., Wood, R. A., et al., 2017. A Deep Root for the Cambrian Explosion: Implications of New Bio- and Chemostratigraphy from the Siberian Platform. Geology, 45(5): 459-462. doi: 10.1130/g38865.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views(408) PDF downloads(93) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return