Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 6
Dec 2021
Turn off MathJax
Article Contents
Bárbara Bueno Toledo, Valdecir de Assis Janasi. Petrogenesis of Granites from the Ediacaran Socorro Batholith, SE Brazil: Constraints from Zircon Dating, Geochemistry and Sr-Nd-Hf Isotopes. Journal of Earth Science, 2021, 32(6): 1397-1414. doi: 10.1007/s12583-021-1494-z
Citation: Bárbara Bueno Toledo, Valdecir de Assis Janasi. Petrogenesis of Granites from the Ediacaran Socorro Batholith, SE Brazil: Constraints from Zircon Dating, Geochemistry and Sr-Nd-Hf Isotopes. Journal of Earth Science, 2021, 32(6): 1397-1414. doi: 10.1007/s12583-021-1494-z

Petrogenesis of Granites from the Ediacaran Socorro Batholith, SE Brazil: Constraints from Zircon Dating, Geochemistry and Sr-Nd-Hf Isotopes

doi: 10.1007/s12583-021-1494-z
More Information
  • Corresponding author: Bárbara Bueno Toledo, barbara.btoledo@usp.br
  • Received Date: 03 Mar 2021
  • Accepted Date: 09 May 2021
  • Publish Date: 30 Dec 2021
  • Whole rock elemental and Sr-Nd isotope geochemistry and in situ zircon Hf isotope geochemistry were used to identify the sources of the Neoproterozoic granites from the Socorro batholith, Socorro-Guaxupé Nappe (SGN), South Brasilia Orogen, Brazil. Zircon trace elements and Hf isotope geochemistry provided information about sources and crystallization (T, fO2) conditions. Three main types of granites built the bulk of the batholiths, beginning with probably pre-collisional ~640-630 Ma charnockites, and ending with ~610 Ma voluminous post-collisional high-K calc-alkaline (HKCA) I-type granites (Bragança Paulista-type). Several types of leucogranites were generated from 625 to 610 Ma, spanning the interval from collisional to post-collisional tectonics. Two charnockite bodies occur in the study area: the ~640 Ma Socorro charnockite has remarkable chemical similarities with Bragança Paulista-type granites, but higher εNd(t)=-6.1 and average zircon εHf(t)=-9.1 and lower 86Sr/87Srt (0.709 3) values, indicative of more juvenile and water-poor source. The ~633 Ma Atibaia charnockite has distinct geochemical signature (lower Mg# and Sr content; higher Zr), more negative εNd(t)=-14.1, similar average zircon εHf(t)=-8.9, and much higher 86Sr/87Srt=0.719 7, probably reflecting a larger component from old crust. The predominant ~610 Ma Bragança Paulista-type granites were emplaced in a post-collisional setting, and correspond to porphyritic biotite-hornblende monzogranites of high-K calc-alkaline character with 61 wt.%-67 wt.% SiO2, high Mg# (39-42), Sr/Y (19-40), La/Yb (12-69), highly negative εNd(t) (-12.3 to-12.9) and zircon εHf(t) (-12 to -17) and 87Sr/86Srt=0.711 9-0.713 1. These features are interpreted as indicative of magma generation in a thickened crust, where melts from enriched mantle sources emplaced in the lowermost crust, heated host old continental crust rocks (gneisses and granulites) and partially mixed with their melting products. Leucogranite plutons (SiO2 > 72 wt.%) occurring in the southern portion of the batholith have a range of geochemical and isotope signatures, reflecting melting of crustal sources in space and time between ~625 Ma (Bocaina Pluton) and ~610 Ma (Bairro da Pedreira Pluton). Highly negative εNd(t) (-16.2) and average zircon εHf(t)=-16, and high 87Sr/86Srt(0.715 6-0.717 1) are consistent with relatively old ortho-and paragneiss sources similar to those which generated regionally abundant migmatites and anatectic granites in the collisional to post-collisional setting.

     

  • loading
  • Annen, C., Blundy, J. D., Sparks, R. S. J., 2006. The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones. Journal of Petrology, 47(3): 505-539. https://doi.org/10.1093/petrology/egi084
    Artur, A. C., 2003. Complexo Granitóide Plurisserial Socorro: Geologia, Petrologia e Recursos Minerais: [Dissertation]. UNESP, Rio Claro, SP. 139
    Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, their Origins and their Geodynamic Environments. Lithos, 46(3): 605-626. https://doi.org/10.1016/s0024-4937(98)00085-1
    Boehnke, P., Watson, B. E., Trail, D., et al., 2013. Zircon Saturation Re-revisited. Chemical Geology, 351: 324−334. https://doi.org/10.1016/j.chemgeo.2013.05.028
    Bonin, B., 1990. From Orogenic to Anorogenic Settings: Evolution of Granitoid Suites after a Major Orogenesis. Geological Journal, 25(3/4): 261-270. https://doi.org/10.1002/gj.3350250309
    Borisov, A., Aranovich, L., 2020. Rutile Solubility and TiO2 Activity in Silicate Melts: An Experimental Study. Chemical Geology. https://doi.org/10.1016/j.chemgeo.2020.119817
    Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elservier. 63e114
    Campos Neto, M. C., Basei, M. A. S., Alves, F. R., et al., 1984a. Geologia da Folha Bragança Paulista—1 : 50 000. Convênio SICCT/PRÓMINÉRIO-IG/USP, São Paulo. 162
    Campos Neto, M. C., Basei, M. A. S., Alves, F. R., et al., 1984b. A Nappe de Cavalgamento Socorro (SP-MG). Do 33℃ongr. Bras. Geol., Rio de Janeiro. 4: 1809-1822
    Campos Neto, M. C., Basei, M. A. S., Assis Janasi, V. D., et al., 2011. Orogen Migration and Tectonic Setting of the Andrelândia Nappe System: An Ediacaran Western Gondwana Collage, South of São Francisco Craton. Journal of South American Earth Sciences, 32(4): 393-406. https://doi.org/10.1016/j.jsames.2011.02.006
    Campos Neto, M. C., Caby, R., 2000. Terrane Accretion and Upward Extrusion of High-Pressure Granulites in the Neoproterozoic Nappes of Southeast Brazil: Petrologic and Structural Constraints. Tectonics, 19(4): 669-687. https://doi.org/10.1029/1999tc900065
    Campos Neto, M. C., Caby, R., 1999. Tectonic Constraint on Neoproterozoic High-Pressure Metamorphism and Nappe System South of São Francisco Craton, Southeast Brazil. Precambrian Research, 97: 3-26. https://doi.org/10.1016/S0301-9268(99)00010-8
    Carvalho, B. B., Sawyer, E. W., Janasi, V. A., 2017. Enhancing Maficity of Granitic Magma during Anatexis: Entrainment of Infertile Mafic Lithologies. Journal of Petrology, 58(7): 1333-1362. https://doi.org/10.1093/petrology/egx056
    Cashman, K. V., Sparks, R. S. J., Blundy, J. D., 2017. Vertically Extensive and Unstable Magmatic Systems: A Unified View of Igneous Processes. Science, 355(6331): eaag3055. https://doi.org/10.1126/science.aag3055
    Castro, A., 2014. The Off-Crust Origin of Granite Batholiths. Geoscience Frontiers, 5(1): 63-75. https://doi.org/10.1016/j.gsf.2013.06.006
    Chappell, B. W., White, A. J. R., Wyborn, D., 1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. Journal of Petrology, 28(6): 1111-1138. https://doi.org/10.1093/petrology/28.6.1111
    Clemens, J. D., Stevens, G., Bryan, S. E., 2020. Conditions during the Formation of Granitic Magmas by Crustal Melting—Hot or Cold; Drenched, Damp or Dry?. Earth-Science Reviews, 200(1): 102982. https://doi.org/10.1016/j.earscirev.2019.102982
    Clemens, J. D., Stevens, G., Farina, F., 2011. The Enigmatic Sources of I-Type Granites: The Peritectic Connexion. Lithos, 126(3/4): 174-181. https://doi.org/10.1016/j.lithos.2011.07.004
    Coelho, M. B., Trouw, R. A. J., Ganade, C. E., et al., 2017. Constraining Timing and P-T Conditions of Continental Collision and Late Overprinting in the Southern Brasília Orogen (SE-Brazil): U-Pb Zircon Ages and Geothermobarometry of the Andrelândia Nappe System. Precambrian Research, 292(2): 194-215. https://doi.org/10.1016/j.precamres.2017.02.001
    Collins, W. J., Huang, H. Q., Jiang, X. Y., 2016. Water-Fluxed Crustal Melting Produces Cordilleran Batholiths. Geology, 44(2): 143-146. https://doi.org/10.1130/g37398.1
    Collins, W. J., Murphy, J. B., Johnson, T. E., et al., 2020. Critical Role of Water in the Formation of Continental Crust. Nature Geoscience, 13(5): 331-338. https://doi.org/10.1038/s41561-020-0573-6
    De la Roche, H., Leterrier, J., Grandclaude, P., et al., 1980. A Classification of Volcanic and Plutonic Rocks Using R1-R2 Diagram and Major-Element Analyses—Its Relationships with Current Nomenclature. Chemical Geology, 29(1/2/3/4): 183-210. https://doi.org/10.1016/0009-2541(80)90020-0
    Debon, F., Le Fort, P., 1988. A Cationic Classification of Common Plutonic Rocks and Their Magmatic Associations: Principles, Method, Applications. Bulletin de Minéralogie, 111(5): 493-510. https://doi.org/10.3406/bulmi.1988.8096
    DePaolo, D. J., 1981. Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization. Earth and Planetary Science Letters, 53(2): 189-202. https://doi.org/10.1016/0012-821x(81)90153-9
    Dickin, A. P., 2005. Radiogenic Isotope Geology 2nd Edition. University of Cambridge Press, Cambridge
    Ebert, H. D., Chemale, F. Jr., Babinski, M., et al., 1996. Tectonic Setting and U/Pb Zircon Dating of the Plutonic Socorro Complex in the Transpressive Rio Paraíba do Sul Shear Belt, SE Brazil. Tectonics, 15(3): 688-699. https://doi.org/10.1029/95tc03247
    Farina, F., Dini, A., Davies, J., et al., 2018. Zircon Petrochronology Reveals the Timescale and Mechanism of Anatectic Magma Formation. Earth and Planetary Science Letters, 495(3): 213-223. https://doi.org/10.1016/j.epsl.2018.05.021
    Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0
    Gromet, P., Silver, L. T., 1987. REE Variations across the Peninsular Ranges Batholith: Implications for Batholithic Petrogenesis and Crustal Growth in Magmatic Arcs. Journal of Petrology, 28(1): 75-125. https://doi.org/10.1093/petrology/28.1.75
    Gualda, G. A. R., Ghiorso, M. S., Lemons, R. V., et al., 2012. Rhyolite- MELTS: A Modified Calibration of Melts Optimized for Silica-Rich, Fluid-Bearing Magmatic Systems. Journal of Petrology, 53(5): 875-890. https://doi.org/10.1093/petrology/egr080
    Hackspacher, P. C., Fetter, A. H., Ebert, H. D., et al., 2003. Magmatismo Há ca. 660-640 Ma no Domínio Socorro: Registros de Convergência Pré-Colisional Na Aglutinação do Gondwana Ocidental. Geologia USP Série Científica, 3(1): 85-96. https://doi.org/10.5327/s1519-874x2003000100007
    Harrison, T. M., Watson, E. B., 1984. The Behavior of Apatite during Crustal Anatexis: Equilibrium and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48: 1467-1477 http://www.onacademic.com/detail/journal_1000035562035710_a5f2.html
    Heilbron, M., Pedrosa-Soares, A. C., Campos Neto, M. C., et al., 2004. A Província Mantiqueira. In: Mantesso-Neto, V., Bartorelli, A., Brito Neves, B. B., eds., Geologia do Continente Sul-americano: Evolução da Obra de Fernando Flávio Marques de Almeida Ed, Beca. 203-234
    Heilbron, M., Ribeiro, A., Valeriano, C. M., et al., 2017. Ribeira Belt. Chap. 15. In: Heilbron, M., Cordani, U. G., Alkmim, F. F. eds., San Francisco Craton, Eastern Brazil. Springer. 277-302
    Heilbron, M., Tupinambá, M., Valeriano, C. M., et al., 2013. The Serra Da Bolívia Complex: The Record of a New Neoproterozoicarc-Related Unit at Ribeira Belt. Precambrian Research, 238: 158-175. https://doi.org/10.1016/j.precamres.2013.09.014
    Hildebrand, R. S., Whalen, J. B., 2014. Arc and Slab-Failure Magmatism in Cordilleran Batholiths II—The Cretaceous Peninsular Ranges Batholith of Southern and Baja California. Geoscience Canada, 41(4): 399. https://doi.org/10.12789/geocanj.2014.41.059
    Hildebrand, R. S., Whalen, J. B., 2017. The Tectonic Setting and Origin of Cretaceous Batholiths within the North American Cordillera: The Case for Slab Failure Magmatism and Its Significance for Crustal Growth. Geological Society of America Special Publicatiton. 532. https://doi.org/10.1130/2017.2532
    Hildreth, W., Moorbath, S., 1988. Crustal Contributions to Arc Magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology, 98(4): 455-489. https://doi.org/10.1007/bf00372365
    Hu, F. Y., Ducea, M. N., Liu, S. W., et al., 2017. Quantifying Crustal Thickness in Continental Collisional Belts: Global Perspective and a Geologic Application. Scientific Reports, 7: 7058. https://doi.org/10.1038/s41598-017-07849-7
    Jagoutz, O., Klein, B., 2018. On the Importance of Crystallization-Differentiation for the Generation of SiO2-Rich Melts and the Compositional Build-up of Arc (and Continental) Crust. American Journal of Science, 318(1): 29-63. https://doi.org/10.2475/01.2018.03
    Jagoutz, O., Schmidt, M. W., 2012. The Formation and Bulk Composition of Modern Juvenile Continental Crust: The Kohistan Arc. Chemical Geology, 298/299(1): 79-96. https://doi.org/10.1016/j.chemgeo.2011.10.022
    Janasi, V. A., 1999. Petrogênese de Granitos Crustais na Nappe de Empurrão Socorro-Guaxupé (SP-MG): Uma Contribuição da Geoquímica Elemental e Isotópica: [Dissertation]. Universidade de São Paulo, São Paulo. 304
    Janasi, V. A., 2002. Elemental and Sr-Nd Isotope Geochemistry of Two Neoproterozoic Mangerite Suites in SE Brazil: Implications for the Origin of the Mangerite-Charnockite-Granite Series. Precambrian Research, 119(1/2/3/4): 301-327. https://doi.org/10.1016/s0301-9268(02)00127-4
    Janasi, V. A., Andrade, S., Vasconcellos, A. C. B. C., et al., 2016. Timing and Sources of Granite Magmatism in the Ribeira Belt, SE Brazil: Insights from Zircon in situ U-Pb Dating and Hf Isotope Geochemistry in Granites from the São Roque Domain. Journal of South American Earth Sciences, 68(1): 224-247. https://doi.org/10.1016/j.jsames.2015.11.009
    Janasi, V. A., Martins, L., Vlach, S. R. F., 2005. Detailed Field Work in Two Out Crops of the Nazaré Paulista Anatectic Granite, SE Brazil. Revista Brasileira de Geociências, 35(1): 99-110 http://www.researchgate.net/profile/Lucelene_Martins/publication/291332409_Detailed_field_work_in_two_outcrops_of_the_Nazare_Paulista_anatectic_granite_SE_Brazil/links/569fbf2408ae2c638eb7c134.pdf
    Janasi, V. A., Ulbrich, H. H. G. J., 1991. Late Proterozoic Granitoid Magmatism in the State of São Paulo, Southeastern Brazil. Precambrian Research, 51(1/2/3/4): 351-374. https://doi.org/10.1016/0301-9268(91)90108-m
    Janasi, V. A., Vlach, S. R. F., Neto, M. C. C., et al., 2009. Associated A-Type Subalkaline and High-K Calc-Alkaline Granites in the Itu Granite Province, Southeastern Brazil: Petrological and Tectonic Significance. The Canadian Mineralogist, 47(6): 1505-1526. https://doi.org/10.3749/canmin.47.6.1505
    Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980-983. https://doi.org/10.1126/science.1136154
    Laurent, O., Björnsen, J., Wotzlaw, J. F., et al., 2020. Earth's Earliest Granitoids are Crystal-Rich Magma Reservoirs Tapped by Silicic Eruptions. Nature Geoscience, 13(2): 163-169. https://doi.org/10.1038/s41561-019-0520-6
    Lee, C. -T. A., Bachmann, O., 2014. How Important is the Role of Crystal Fractionation in Making Intermediate Magmas? Insights from Zr and P Systematics. Earth and Planetary Science Letters, 393(B11): 266-274. https://doi.org/10.1016/j.epsl.2014.02.044
    Leite, R. J., Janasi, V. A., Creaser, R. A., et al., 2007. The Late- to Postorogenic Transition in the Apiaí Domain, SE Brazil: Constraints from the Petrogenesis of the Neoproterozoic Agudos Grandes Granite Batholith. Journal of South American Earth Sciences, 23(2/3): 213-235. https://doi.org/10.1016/j.jsames.2006.09.003
    Liégeois, J. P., 1998. Preface—Some Words on the Post-Collisional Magmatism. Lithos, 45: xv-xvii doi: 10.1016/S0024-4937(98)00065-6
    Liégeois, J. P., Navez, J., Hertogen, J., et al., 1998. Contrasting Origin of Post-Collisional High-K Calc-Alkaline and Shoshonitic Versus Alkaline and Peralkaline Granitoids. the Use of Sliding Normalization. Lithos, 45(1/2/3/4): 1-28. https://doi.org/10.1016/s0024-4937(98)00023-1
    Martins, L., Vlach, S. R. F., Janasi, V. A., 2009. Reaction Microtextures of Monazite: Correlation between Chemical and Age Domains in the Nazaré Paulista Migmatite, SE Brazil. Chemical Geology, 261(3/4): 271-285. https://doi.org/10.1016/j.chemgeo.2008.09.020
    Meira, V. T., García-Casco, A., Juliani, C., et al., 2015. The Role of Intracontinental Deformation in Supercontinent Assembly: Insights from the Ribeira Belt, Southeastern Brazil (Neoproterozoic West Gondwana). Terra Nova, 27(3): 206-217. https://doi.org/10.1111/ter.12149
    Miller, C. F., McDowell, S. M., Mapes, R. W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529-532. https://doi.org/10.1130/0091-7613(2003)031<0529:hacgio>2.0.co;2 doi: 10.1130/0091-7613(2003)031<0529:hacgio>2.0.co;2
    Motta, R. G., Fitzsimons, I. C. W., Moraes, R., et al., 2021. Recovering P-T-t Paths from Ultra-High Temperature (UHT) Felsic Orthogneiss: An Example from the Southern Brasília Orogen, Brazil. Precambrian Research, 359: 106222. https://doi.org/10.1016/j.precamres.2021.106222
    Moyen, J. -F., Laurent, O., Chelle-Michou, C., et al., 2017. Collision vs. Subduction-Related Magmatism: Two Contrasting Ways of Granite Formation and Implications for Crustal Growth. Lithos, 277(4): 154-177. https://doi.org/10.1016/j.lithos.2016.09.018
    Müntener, O., Ulmer, P., 2018. Arc Crust Formation and Differentiation Constrained by Experimental Petrology. American Journal of Science, 318(1): 64-89. https://doi.org/10.2475/01.2018.04
    Mutch, E. J. F., Blundy, J. D., Tattitch, B. C., et al., 2016. An Experimental Study of Amphibole Stability in Low-Pressure Granitic Magmas and a Revised Al-in-Hornblende Geobarometer. Contributions to Mineralogy and Petrology, 171(10): 1-27. https://doi.org/10.1007/s00410-016-1298-9
    Naranjo, A. F. S., Vlach, S. R. F., 2018. On the Crystallization Conditions of the Neoproterozoic, High-K Calc-Alkaline, Bragança Paulista-Type Magmatism, Southern Brasília Orogen, SE Brazil. Brazilian Journal of Geology, 48(3): 631-650. https://doi.org/10.1590/2317-4889201820180033
    Oliveira, M. A. F., De Assis Negri, F., Zanardo, A., et al., 2019. Archean and Paleoproterozoic Crust Generation Events, Amparo Complex and Serra Negra Orthogneiss in Southern Brasília Orogen, SE Brazil. Journal of South American Earth Sciences, 90(2): 137-154. https://doi.org/10.1016/j.jsames.2018.11.029
    Oliveira, M. A. F., Morales, N., Fúlfaro, V. J., et al., 1986. Geologia da Quadrícula de Atibaia. Relatório Final. Convênio SICCT/PRÓ-MINÉRIO-IGCE/UNESP. 116
    Pitcher, W. S., 1983. Granite Type and Tectonic Environment. In: Keneth, J. H., ed., Mountains Building Processes. Acad. Press, London. 19-40
    Profeta, L., Ducea, M. N., Chapman, J. B., et al., 2015. Quantifying Crustal Thickness over Time in Magmatic Arcs. Scientific Reports, 5: 17786. https://doi.org/10.1038/srep17786
    Rocha, B. C., Moraes, R., Möller, A., et al., 2018. Magmatic Inheritance vs. UHT Metamorphism: Zircon Petrochronology of Granulites and Petrogenesis of Charnockitic Leucosomes of the Socorro-Guaxupé Nappe, SE Brazil. Lithos, 314/315(2): 16-39. https://doi.org/10.1016/j.lithos.2018.05.014
    Salazar Mora, C. A., Campos Neto, M. D. C., Basei, M. A. S., 2014. Syn-Collisional Lower Continental Crust Anatexis in the Neoproterozoic Socorro-Guaxupé Nappe System, Southern Brasília Orogen, Brazil: Constraints from Zircon U-Pb Dating, Sr-Nd-Hf Signatures and Whole-Rock Geochemistry. Precambrian Research, 255(3): 847-864. https://doi.org/10.1016/j.precamres.2014.10.017
    Sisson, T. W., Ratajeski, K., Hankins, W. B., et al., 2005. Voluminous Granitic Magmas from Common Basaltic Sources. Contributions to Mineralogy and Petrology, 148(6): 635-661. https://doi.org/10.1007/s00410-004-0632-9
    Tassinari, C., 1988. As Idades das Rochas e dos Eventos Metamórficos da Porção Sudeste do Estado de São Paulo e sua Evolução Crustal: [Dissertation]. Universidade de São Paulo, São Paulo. 236
    Tedeschi, M., Pedrosa-Soares, A., Dussin, I., et al., 2018. Protracted Zircon Geochronological Record of UHT Garnet-Free Granulites in the Southern Brasília Orogen (SE Brazil): Petrochronological Constraints on Magmatism and Metamorphism. Precambrian Research, 316(7): 103-126. https://doi.org/10.1016/j.precamres.2018.07.023
    Toledo, B. B., Janasi, V. A., Silva, L. G. R. D., 2018. SHRIMP U-Pb Geochronology of the Socorro Batholith and Implications for the Neoproterozoic Evolution in SE Brazil. Brazilian Journal of Geology, 48(4): 761-782. https://doi.org/10.1590/2317-4889201820180040
    Trouw, R. A. J., Peternel, R., Ribeiro, A., et al., 2013. A New Interpretation for the Interference Zone between the Southern Brasília Belt and the Central Ribeira Belt, SE Brazil. Journal of South American Earth Sciences, 48: 43-57. https://doi.org/10.1016/j.jsames.2013.07.012
    Valeriano, C. D. M., Mendes, J. C., Tupinambá, M., et al., 2016. Cambro- Ordovician Post-Collisional Granites of the Ribeira Belt, SE-Brazil: A Case of Terminal Magmatism of a Hot Orogen. Journal of South American Earth Sciences, 68(1): 269-281. https://doi.org/10.1016/j.jsames.2015.12.014
    Virmond, L. A., 2019. Petrochronology of Anatectic Rocks from Nazaré Paulista (SP), Southern Socorro Guaxupé Nappe: [Dissertation]. Universidade de São Paulo, São Paulo
    Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821x(83)90211-x
    Wernick, E., Didier, J., Artur, A. C., et al., 1984a. Caracterização da Zona Marginal Charnockítica do Complexo Socorro nos Arredores da Cidade Homônima, SP/MG. 33° Congresso Brasileiro de Geologia, 6: 2919-2934
    Wernick, E., Hormann, P. K., Artur, A. C., et al., 1984b. Aspectos Petrológicos do Complexo Granítico Socorro (SP/MG): Dados Analíticos e Discussão Preliminar. Revista Brasileira de Geociências, 14(1): 23-29. https://doi.org/10.25249/0375-7536.19842329
    Whalen, J. B., Hildebrand, R. S., 2019. Trace Element Discrimination of Arc, Slab Failure, and A-Type Granitic Rocks. Lithos, 348/349(11): 105179. https://doi.org/10.1016/j.lithos.2019.105179
    Zhao, K., Xu, X. S., Erdmann, S., 2017. Crystallization Conditions of Peraluminous Charnockites: Constraints from Mineral Thermometry and Thermodynamic Modelling. Contributions to Mineralogy and Petrology, 172(5): 26. https://doi.org/10.1007/s00410-017-1344-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views(381) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return