Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 16 Issue 2
Jun 2005
Turn off MathJax
Article Contents
Zhaochong Zhang, Shenghao Yan, Bailin Chen, Gang Zhou, Yongkang He, Fengmei Chai, Lixin He. Middle Devonian Picrites of the Southern Margin of Altay Orogenic Belt and Implications for the Tectonic Setting and Petrogenesis. Journal of Earth Science, 2005, 16(2): 95-103.
Citation: Zhaochong Zhang, Shenghao Yan, Bailin Chen, Gang Zhou, Yongkang He, Fengmei Chai, Lixin He. Middle Devonian Picrites of the Southern Margin of Altay Orogenic Belt and Implications for the Tectonic Setting and Petrogenesis. Journal of Earth Science, 2005, 16(2): 95-103.

Middle Devonian Picrites of the Southern Margin of Altay Orogenic Belt and Implications for the Tectonic Setting and Petrogenesis

Funds:

the National Project 305 2001BA609A-07-02

State Key Laboratory of Geological Processes and Mineral Resources and Project 973 2001CB409807

  • Received Date: 28 Feb 2005
  • Accepted Date: 30 Mar 2005
  • The Altay orogenic belt of Xinjiang in NW China represents one of the important sites of juvenile crustal growth during the Phanerozoic. However, some important issues, e.g., tectonic evolution and petrogenesis, still remain controversial. The picrites in the south margin of the Altay orogenic belt were discovered in the lower part of marine volcanic-sedimentary sequences of the northwest-striking Middle Devonian Beitashan Formation (Fm.), which consists chiefly of intermediate-basic volcanic rocks intercalated minor carbonate, siltstone and siliceous rocks. The picrites are usually highly porphyritic, and contain abundant forsteritic olivine phenocrysts with minor clinopyroxene distributed in the groundmass, which consist of olivine, clinopyroxene and plagioclase with minor Fe-Ti oxides. The MgO contents of the picrites range from 14 wt% to 22 wt% with Mg# (atomic Mg/ (Mg+Fe) ratio) of 0.75-0.80. They are characterized by slightly negative Ti anomalies, remarkably negative Nb and Ta anomalies and slightly positive P and Sm anomalies with the similar abundances of HFSE as MORB on the MORB-normalized trace element patterns, all of which characterize typical island arc magmas. In combing with the southwestward migration of the magmas of the Beitashan Fm., we propose that the magmas may result from the southwestward subduction of Junggar ocean plate. The Zr/Nb ratios (23-66) of both picrites and basalts resemble the MORB (10-66), suggesting that they were derived from the MORB-like sources. However, the basalts and picrites display some distinguishable element ratios and REE patterns, e.g., Ti/V (23-35) and Zr/Sm (18-23) ratios of basalts are higher than those of picrites (14-17 and 14-15 respectively), and the basalts display flat-type REE-chondrite patterns whereas the picrites are characterized by lower total REE concentrations ((26-34)×10-6) and slight enrichment of light REE. These distinguished geochemical characteristics could be interpreted by different partial melting degrees and mantle sources, i.e., the basalts were generated by lower partial melting of amphibole-bearing spinel peridotite which was metasomatized by fluids released from subducted oceanic crust, and the picrites were resulted from the higher degree of partial melting of metasomatized garnet peridotite under high temperature. In contrast, the andesite with significant LREE and LILE enrichment may be resulted from the partial melting of eclogites.

     

  • loading
  • Anderson, D. L., 1994. Komatiites and Picrites: Evidence That "Plume" Source is Depleted. Earth Planet. Sci. Lett., 128: 303-311 doi: 10.1016/0012-821X(94)90152-X
    Davidson, J. P., 1996. Deciphering Mantle and Crustal Signatures in Subduction Zone Magmatism, Subduction Top to Bottom. Geophys., Monogr, 96, Amercian Geophysical Union, Washington D C, 251-262
    Green, D. H., Falloon, T., Eggins, S. M., et al., 2001. Primary Magmas and Mantle Temperatures. European Journal of Mineralogy, 13: 37-451
    Han, B. F., 1991. The Middle Devonian Bimodal Association of Volcanic Rocks in the Northern Area of East Junggar, Xinjiang. Acta Geologica Sinica, 65: 317-326(in Chinese with English Abstract)
    Hawkesworth, C. J., Gallagher, K., Hergt, J. M., et al., 1993. Mantle and Slab Contributions in Arc Magmas. Annu. Rev. Earth Planet. Sci. Lett., 21: 175-204 doi: 10.1146/annurev.ea.21.050193.001135
    Hawkesworth, C. J., Turner, S., McDermott, F., et al., 1997. U-Th Isotopes in Arc Magmas for Element Transfer from the Subducted Crust. Science, 276: 551-555 doi: 10.1126/science.276.5312.551
    He, G. Q., Li, M. S., Liu, D. Q., et al., 1994. Paleozoic Crust and Its Evolution of Xinjiang, China. Xinjiang People' s Press, Wulumuqi(in Chinese)
    Le Bas, M. J., 2000. IUGS Reclassification of the High-Mg and Picritic Volcanic Rocks. J. Petrol., 41(10): 1467-1470 doi: 10.1093/petrology/41.10.1467
    Li, J. Y., 1991. On Evolution of Paleozoic Plate Tectonics of East Junggar, Xinjiang, China. In: Xiao, X., Tang, Y., eds., Tectonic Evolution of the Southern Margin of the Paleo-Asian Composite Megasuture. Beijing Scientifc and Technical Publishing House, Beijing. 92-108(in Chinese with English Abstract)
    Li, J. Y., Xu, X., 2004. Major Problems on Geologic Structures and Metanogenesis of Northern Xinjiang, Northwest China. Xinjiang Geology, 22(2): 119-124(in Chinese with English Abstract)
    Macdonald, R., Hawkesworth, C. J., Heath, E., 2000. The Lesser Antilles Volcanic Chain: A Study in Arc Magmatism. Earth Sci. Rev., 49: 1-76 doi: 10.1016/S0012-8252(99)00069-0
    McCulloch, M. T., Gamble, J. A., 1991. Geochemical and Geodynamic Constraints on Subduction Zone Magmatism. Earth Planet. Sci. Lett., 102: 358-374 doi: 10.1016/0012-821X(91)90029-H
    Miller, D. M., Goldstein, S. L., Langmuir, C. H., 1995. Cerium/Lead and Lead Isotope Ratios in Arc Magmas and the Enrichment in Lead of the Contents. Nature, 368: 514-520
    Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Continental Margins. Am. J. Sci., 274: 321-355 doi: 10.2475/ajs.274.4.321
    Morris, J. D., Leeman, W. P., Tera, F., 1990. The Subducted Component in Island Arc Lavas: Constraints from Be Isotope and B-Be Systematics. Nature, 344: 31-36 doi: 10.1038/344031a0
    Pearce, J. A., Parkinson, I. J., 1993. Trace-Element Models for Mantle Melting: Application to Volcanic Arc Petrogenesis. Geo. Soc. London, Spec. Publ., 76: 373-403 doi: 10.1144/GSL.SP.1993.076.01.19
    Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annu. Rev. Earth Planet. Sci. Lett., 24: 151-185
    Plank, T., Langmuir, C. H., 1993. Tracing Trace-Elements from Sediment Input to Volcanic Output at Subduction Zones. Nature, 362: 739-743 doi: 10.1038/362739a0
    Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chem. Geol., 145: 325-394 doi: 10.1016/S0009-2541(97)00150-2
    Rapp, R. P., Watson, E. B., Miller, C. F., 1991. Partial Melting of Amphibolite/Ecolgite and the Origin of Archean Trondhjemites and Tonalities. Precambrian Res., 51: 1-25 doi: 10.1016/0301-9268(91)90092-O
    Rea, D. K., Ruff, L. J., 1996. Composition and Mass Flux of Sediment Entering the World's Subduction Zones: Implications for Global Sediment Budgets, Great Earthquakes and Volcanism. Earth Planet. Sci. Lett., 140: 1-12 doi: 10.1016/0012-821X(96)00036-2
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A. D., Norry, M. J., eds., Magmatism in the Ocean Basins. Geological Society London, Special Publication, 42: 313-345
    Thirlwall, M. F., Smith, T. E., Graham, A. M., et al., 1994. High Field Strength Element Anomalies in Arc Lavas: Source or Process? J. Petrol., 35: 819-838 doi: 10.1093/petrology/35.3.819
    Wang, D. H., Chen, Y. C., Xu, Z. G., et al., 2002. Metallogenic Series and Regularities in Altay Metallogenic Province. Atomic Energy Press, Beijing. 493(in Chinese)
    Wang, J. B., Zhang, J. H., Ding, R. F., et al., 2000. Tectonic-Metallogenic System in the Altay Orogenic Belt, China. Acta Geologica Sinica, 74(3): 485-491
    Wei, G. Y., Ni, Z. Y., 1990. Preliminary Study of the Rift Volcanic Rocks of the Irtysh Volcanic Area, Xinjiang. J. Mineral. Petrol., 10(3): 15-23(in Chinese with English Abstract)
    Wilson, M., 1989. Igneous Petrogenesis. Unwin Hyman, London
    Xu, J. F., Mei, H. J., Yu, X. Y., et al., 2001. Adakites Related to Subduction in the Northern Margin of Junggar Arc for the Late Paleozoic: Products of Slab Melting. Chinese Science Bulletin, 46: 684-688(in Chinese) doi: 10.1360/csb2001-46-8-684
    Yang, W. P., Zhou, G., Zhang, Z. H., et al., 2005. Discovery of the Xileketehalsu Porphyry Copper Deposit in the South Margin of the Altay Metallogenic Belt. Geology in China, 32: 107-114(in Chinese with English Abstract)
    Ye, Q. T., Fu, X. J., Wang, B. L., 1998. Metallogeny of Polymetallic Belts on the Southern Margin of the Altay Mountains, Xinjiang. China. Acta Geologica Sinica, 72 (4): 349-357(in Chinese with English Abstract)
    Yu, X. Y., Mei, H. J., Yang, X. C., et al., 1993. Volcanic Rocks and Tectonic Evolution of the Irytish Region. In: Tu, G. C., ed., New Progress of Solid Earth Sciences of the Northern Xinjiang. Science Press, Beijing. 185-198
    Zhang, Z. C., Hao, Y. L., Wang, F. S., 2003. Picrites in Large Igneous Province and Implications. Earth Science Frontiers, 10(3): 347-358(in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views(265) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return