Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 4
Jul 2018
Turn off MathJax
Article Contents
Rui-Cheng Wang, Hong-Mei Wang, Xing Xiang, Yu Gao, Qing-Wei Song, Lin-Feng Gong. Temporal and Spatial Variations of Microbial Carbon Utilization in Water Bodies from the Dajiuhu Peatland, Central China. Journal of Earth Science, 2018, 29(4): 969-976. doi: 10.1007/s12583-017-0818-5
Citation: Rui-Cheng Wang, Hong-Mei Wang, Xing Xiang, Yu Gao, Qing-Wei Song, Lin-Feng Gong. Temporal and Spatial Variations of Microbial Carbon Utilization in Water Bodies from the Dajiuhu Peatland, Central China. Journal of Earth Science, 2018, 29(4): 969-976. doi: 10.1007/s12583-017-0818-5

Temporal and Spatial Variations of Microbial Carbon Utilization in Water Bodies from the Dajiuhu Peatland, Central China

doi: 10.1007/s12583-017-0818-5
More Information
  • Corresponding author: Hong-Mei Wang
  • Received Date: 11 May 2017
  • Accepted Date: 27 Aug 2017
  • Publish Date: 01 Aug 2018
  • To investigate the microbial utilization of organic carbon in peatland ecosystem, water samples were collected from the Dajiuhu Peatland and nearby lakes, central China across the year of 2014. The acridine orange (AO) staining and Biolog Eco microplates were used to numerate microbial counts and determine the carbon utilization of microbial communities. Meanwhile, physicochemical characteristics were measured for subsequent analysis of the correlation between microbial carbon utilization and environmental factors. Results indicated that total microbial counts were between 106-107 cells/L. Microbial diversities and carbon utilization rates showed a similar pattern, highest in September and lowest in November. Microbial communities in the peat pore waters preferred to utilize N-bearing carbon sources such as amines and amino acids compared with microbial communities in lakes. The network analysis of microbial utilization of 31 carbon substrates clearly distinguished microbial communities from peat pore waters and those from lakes. Redundancy analysis (RDA) showed the total organic nitrogen content (P=0.03, F=2.5) and daily average temperature (P=0.034, F=2.4) significantly controlled microbial carbon utilization throughout the sampling period. Our report is the first one to address the temporal and spatial variations of carbon utilization of microbial communities which are closely related to the decomposition of organic matter in the Dajiuhu Peatland in context of climate warming.

     

  • loading
  • Archer, D., Martin, P., Buffett, B., et al., 2004. The Importance of Ocean Temperature to Global Biogeochemistry. Earth and Planetary Science Letters, 222(2):333-348. https://doi.org/10.1016/j.epsl.2004.03.011
    Armstrong, A., Waldron, S., Ostle, N. J., et al., 2015. Biotic and Abiotic Factors Interact to Regulate Northern Peatland Carbon Cycling. Eco-systems, 18(8):1395-1409. https://doi.org/10.13039/501100000270
    Barberán, A., Bates, S. T., Casamayor, E. O., et al., 2012. Using Network Analysis to Explore Co-Occurrence Patterns in Soil Microbial Com-munities. The ISME Journal, 6(2):343-351. https://doi.org/10.1038/ismej.2011.119
    Bastian, M., Heymann, S., Jacomy, M., 2009. Gephi:An Open Source Software for Exploring and Manipulating Networks. ICWSM, 8:361-362 http://dblp.uni-trier.de/db/conf/icwsm/icwsm2009.html#BastianHJ09
    Bending, G. D., Putland, C., Rayns, F., 2000. Changes in Microbial Community Metabolism and Labile Organic Matter Fractions as Early Indicators of the Impact of Management on Soil Biological Quality. Biology and Fertility of Soils, 31(1):78-84. https://doi.org/10.1007/s003740050627
    Bengtsson, F., Granath, G., Rydin, H., 2016. Photosynthesis, Growth, and Decay Traits in Sphagnum-A Multispecies Comparison. Ecology and Evolution, 6(10):3325-3341. https://doi.org/10.13039/501100001725
    Berman, T., Bronk, D., 2003. Dissolved Organic Nitrogen:A Dynamic Participant in Aquatic Ecosystems. Aquatic Microbial Ecology, 31(3):279-305. https://doi.org/10.3354/ame031279
    Bon, C. E., Reeve, A. S., Slater, L., et al., 2014. Using Hydrologic Meas-urements to Investigate Free-Phase Gas Ebullition in a Maine Peatland, USA. Hydrology and Earth System Sciences, 18(3):953-965. https://doi.org/10.5194/hess-18-953-2014
    Bragina, A., Berg, C., Müller, H., et al., 2013. Insights into Functional Bacterial Diversity and Its Effects on Alpine Bog Ecosystem Functioning. Scientific Reports, 3(6):1955. https://doi.org/10.1038/srep01955
    Brown, M. G., Humphreys, E. R., Moore, T. R., et al., 2014. Evidence for a Nonmonotonic Relationship between Ecosystem-Scale Peatland Methane Emissions and Water Table Depth. Journal of Geophysical Research:Biogeosciences, 119(5):826-835. https://doi.org/10.1002/2013jg002576
    Brzostek, E. R., Finzi, A. C., 2011. Substrate Supply, Fine Roots, and Temperature Control Proteolytic Enzyme Activity in Temperate Forest Soils. Ecology, 92(4):892-902. https://doi.org/10.1890/10-1803.1
    Bushaw-Newton, K. L., Ewers, E. C., Velinsky, D. J., et al., 2012. Bacterial Community Profiles from Sediments of the Anacostia River Using Metabolic and Molecular Analyses. Environmental Science and Pollution Research, 19(4):1271-1279. https://doi.org/10.1007/s11356-011-0656-4
    Busse, M. D., Ratcliff, A. W., Shestak, C. J., et al., 2001. Glyphosate Toxicity and the Effects of Long-Term Vegetation Control on Soil Microbial Communities. Soil Biology and Biochemistry, 33(12/13):1777-1789. https://doi.org/10.1016/s0038-0717(01)00103-1
    Conan, P., Joux, F., Torréton, J., et al., 2008. Effect of Solar Ultraviolet Radiation on Bacterio-and Phytoplankton Activity in a Large Coral Reef Lagoon (Southwest New Caledonia). Aquatic Microbial Ecology, 52:83-98. https://doi.org/10.3354/ame01204
    Dahllöf, I., Agrenius, S., Blanck, H., et al., 2001. The Effect of TBT on the Structure of a Marine Sediment Community-A Boxcosm Study. Marine Pollution Bulletin, 42(8):689-695. https://doi.org/10.1016/s0025-326x(00)00219-8
    Davidson, E. A., Janssens, I. A., 2006. Temperature Sensitivity of Soil Carbon Decomposition and Feedbacks to Climate Change. Nature, 440(7081):165-173. https://doi.org/10.1038/nature04514
    Dijkstra, P., Thomas, S. C., Heinrich, P. L., et al., 2011. Effect of Temperature on Metabolic Activity of Intact Microbial Communities:Evidence for Altered Metabolic Pathway Activity but not for Increased Maintenance Respiration and Reduced Carbon Use Efficiency. Soil Biology and Biochemistry, 43(10):2023-2031. https://doi.org/10.1016/j.soilbio.2011.05.018
    Foster, R. A., Kuypers, M. M. M., Vagner, T., et al., 2011. Nitrogen Fixation and Transfer in Open Ocean Diatom-Cyanobacterial Symbioses. The ISME Journal, 5(9):1484-1493. https://doi.org/10.1038/ismej.2011.26
    Francisco, D. E., Mah, R. A., Rabin, A. C., 1973. Acridine Orange-Epifluorescence Technique for Counting Bacteria in Natural Waters. Transactions of the American Microscopical Society, 92(3):416-421. https://doi.org/10.2307/3225245
    Freitag, T. E., Toet, S., Ineson, P., et al., 2010. Links between Methane Flux and Transcriptional Activities of Methanogens and Methane Oxidizers in a Blanket Peat Bog. FEMS Microbiology Ecology, 73(1):157-165. https://doi.org/10.1111/j.1574-6941.2010.00871.x
    Gong, L. F., Wang, H. M., Xiang, X., et al., 2015. pH Shaping the Composition of sqhC-Containing Bacterial Communities. Geomicrobiology Journal, 32(5):433-444. https://doi.org/10.1080/01490451.2014.950363
    Gougoulias, C., Clark, J. M., Shaw, L. J., 2014. The Role of Soil Microbes in the Global Carbon Cycle:Tracking the Below-Ground Microbial Processing of Plant-Derived Carbon for Manipulating Carbon Dynamics in Agricultural Systems. Journal of the Science of Food and Agriculture, 94(12):2362-2371. https://doi.org/10.13039/501100000268
    Grayston, S. J., Campbell, C. D., Bardgett, R. D., et al., 2004. Assessing Shifts in Microbial Community Structure across a Range of Grasslands of Differing Management Intensity Using CLPP, PLFA and Community DNA Techniques. Applied Soil Ecology, 25(1):63-84. https://doi.org/10.1016/s0929-1393(03)00098-2
    Gryta, A., Frąc, M., Oszust, K., 2014. The Application of the Biolog EcoPlate Approach in Ecotoxicological Evaluation of Dairy Sewage Sludge. Applied Biochemistry and Biotechnology, 174(4):1434-1443. https://doi.org/10.1007/s12010-014-1131-8
    Häder, D. P., Sinha, R. P., 2005. Solar Ultraviolet Radiation-Induced DNA Damage in Aquatic Organisms:Potential Environmental Impact. Fun-damental and Molecular Mechanisms of Mutagenesis, 571(1/2):221-233. https://doi.org/10.1016/j.mrfmmm.2004.11.017
    Heitkamp, M. A., Cerniglia, C. E., 1988. Mineralization of Polycyclic Aromatic Hydrocarbons by a Bacterium Isolated from Sediment Below an Oil Field. Applied and Environmental Microbiology, 54(6):1612-1614 http://aem.asm.org/content/54/6/1612.abstract
    Hijnen, W. A. M., Beerendonk, E. F., Medema, G. J., 2006. Inactivation Credit of UV Radiation for Viruses, Bacteria and Protozoan (oo)Cysts in Water:A Review. Water Research, 40(1):3-22. https://doi.org/10.1016/j.watres.2005.10.030
    Huang, X. F., Mu, T. S., Shen, C. M., et al., 2016. Effects of Bio-Surfactants Combined with Alkaline Conditions on Volatile Fatty Acid Production and Microbial Community in the Anaerobic Fermentation of Waste Activated Sludge. International Biodeterioration & Biodegradation, 114:24-30. https://doi.org/10.1016/j.ibiod.2016.05.014
    Huang, X. Y., Wang, C. F., Xue, J. T., et al., 2010. Occurrence of Diploptene in Moss Species from the Dajiuhu Peatland in Southern China. Organic Geochemistry, 41(3):321-324. https://doi.org/10.1016/j.orggeochem.2009.09.008
    Juottonen, H., Hynninen, A., Nieminen, M., et al., 2012. Methane-Cycling Microbial Communities and Methane Emission in Natural and Restored Peatlands. Applied and Environmental Microbiology, 78(17):6386-6389. https://doi.org/10.1128/aem.00261-12
    Kirchman, D. L., Morán, X. A. G., Ducklow, H., 2009. Microbial Growth in the Polar Oceans-Role of Temperature and Potential Impact of Climate Change. Nature Reviews Microbiology, 7(6):451-459. https://doi.org/10.1038/nrmicrO2115
    Kong, X., Wang, C., Ji, M., 2013. Analysis of Microbial Metabolic Characteristics in Mesophilic and Thermophilic Biofilters Using Biolog Plate Technique. Chemical Engineering Journal, 230(16):415-421. https://doi.org/10.1016/j.cej.2013.06.073
    Kourtev, P. S., Hill, K. A., Shepson, P. B., et al., 2011. Atmospheric Cloud Water Contains a Diverse Bacterial Community. Atmospheric Envi-ronment, 45(30):5399-5405. https://doi.org/10.1016/j.atmosenv.2011.06.041
    Litchfield, C., Gillevet, P., 2002. Microbial Diversity and Complexity in Hypersaline Environments:A Preliminary Assessment. Journal of In-dustrial Microbiology & Biotechnology, 28(1):48-55. https://doi.org/10.1038/sj/jim/7000175
    Loisel, J., Gallego-Sala, A. V., Yu, Z., 2012. Global-Scale Pattern of Peatland Sphagnum Growth Driven by Photosynthetically Active Radiation and Growing Season Length. Biogeosciences, 9(7):2737-2746. https://doi.org/10.5194/bg-9-2737-2012
    Louis, P., Scott, K. P., Duncan, S. H., et al., 2007. Understanding the Effects of Diet on Bacterial Metabolism in the Large Intestine. Journal of Applied Microbiology, 102(5):1197-1208. https://doi.org/10.1111/j.1365-2672.2007.03322.x
    Mikan, C. J., Schimel, J. P., Doyle, A. P., 2002. Temperature Controls of Microbial Respiration in Arctic Tundra Soils above and below Freezing. Soil Biology and Biochemistry, 34(11):1785-1795. https://doi.org/10.1016/s0038-0717(02)00168-2
    Moore, S., Evans, C. D., Page, S. E., et al., 2013. Deep Instability of Deforested Tropical Peatlands Revealed by Fluvial Organic Carbon Fluxes. Nature, 493(7434):660-663. https://doi.org/10.1038/nature11818
    Moorhead, D. L., Lashermes, G., Sinsabaugh, R. L., 2012. A Theoretical Model of C-and N-Acquiring Exoenzyme Activities, which Balances Microbial Demands during Decomposition. Soil Biology and Biochem-istry, 53:133-141. https://doi.org/10.1016/j.soilbio.2012.05.011
    Myers, R. T., Zak, D. R., White, D. C., et al., 2001. Landscape-Level Patterns of Microbial Community Composition and Substrate Use in Upland Forest Ecosystems. Soil Science Society of America Journal, 65(2):359-367. https://doi.org/10.2136/sssaj2001.652359x
    Ridgwell, A., Hargreaves, J. C., Edwards, N. R., et al., 2007. Marine Geochemical Data Assimilation in an Efficient Earth System Model of Global Biogeochemical Cycling. Biogeosciences, 4(1):87-104. https://doi.org/10.5194/bg-4-87-2007
    Rousk, J., Bååth, E., Brookes, P. C., et al., 2010. Soil Bacterial and Fungal Communities across a pH Gradient in an Arable Soil. The ISME Journal, 4(10):1340-1351. https://doi.org/10.1038/ismej.2010.58
    Sanz-Lázaro, C., Valdemarsen, T., Marín, A., et al., 2011. Effect of Tem-perature on Biogeochemistry of Marine Organic-Enriched Systems:Implications in a Global Warming Scenario. Ecological Applications, 21(7):2664-2677. https://doi.org/10.1890/10-2219.1
    Satoh, H., Miura, Y., Tsushima, I., et al., 2007. Layered Structure of Bacterial and Archaeal Communities and Their in situ Activities in Anaerobic Granules. Applied and Environmental Microbiology, 73(22):7300-7307. https://doi.org/10.1128/aem.01426-07
    Tian, J., McCormack, L., Wang, J. Y., et al., 2015. Linkages between the Soil Organic Matter Fractions and the Microbial Metabolic Functional Diversity within a Broad-Leaved Korean Pine Forest. European Journal of Soil Biology, 66:57-64. https://doi.org/10.1016/j.ejsobi.2014.12.001
    Williams, C. J., Yamashita, Y., Wilson, H. F., et al., 2010. Unraveling the Role of Land Use and Microbial Activity in Shaping Dissolved Organic Matter Characteristics in Stream Ecosystems. Limnology and Oceanography, 55(3):1159-1171. https://doi.org/10.4319/lo.2010.55.3.1159
    Wong, J. W. C., Lai, K. M., Wan, C. K., et al., 2002. Isolation and Optimization of PAH-Degradative Bacteria from Contaminated Soil for PAHs Bioremediation. Water, Air, and Soil Pollution, 139(1-4):1-13 http://cat.inist.fr/?aModele=afficheN&cpsidt=13741983
    Xiang, X., Wang, H. M., Gong, L. F., et al., 2014. Vertical Variations and Associated Ecological Function of Bacterial Communities from Sphagnum to Underlying Sediments in Dajiuhu Peatland. Science China Earth Sciences, 57(5):1013-1020. https://doi.org/10.1007/s11430-013-4752-9
    Xiang, X., Wang, R. C., Wang, H. M., et al., 2017. Distribution of Bath-yarchaeota Communities across Different Terrestrial Settings and Their Potential Ecological Functions. Scientific Reports, 7:45028. https://doi.org/10.1038/srep45028
    Xie, Z. Y., Hu, C. Q., Zhang, L. P., et al., 2007. Identification and Patho-genicity of Vibrio Ponticus Affecting Cultured Japanese Sea Bass, Lateolabrax Japonicus (Cuvier in Cuvier and Valenciennes). Letters in Applied Microbiology, 45(1):62-67. https://doi.org/10.1111/j.1472-765x.2007.02141.x
    Zak, D. R., Pregitzer, K. S., 1990. Spatial and Temporal Variability of Nitrogen Cycling in Northern Lower Michigan. Forest Science, 36(2):367-380 http://cat.inist.fr/?aModele=afficheN&cpsidt=19362123
    Zhang, W., Parker, K. M., Luo, Y., et al., 2005. Soil Microbial Responses to Experimental Warming and Clipping in a Tallgrass Prairie. Global Change Biology, 11(2):266-277. https://doi.org/10.1111/j.1365-2486.2005.00902.x
    Zhang, Y., Cao, C., Guo, L., et al., 2015. Soil Properties, Bacterial Community Composition, and Metabolic Diversity Responses to Soil Salinization of a Semiarid Grassland in Northeast China. Journal of Soil and Water Conservation, 70(2):110-120. https://doi.org/10.2489/jswc.70.2.110
    Zhao, S. L., Guo, Y., Sheng, Q. H., et al., 2014. Advanced Heat Map and Clustering Analysis Using Heatmap3. BioMed Research International, 2014:986048. https://doi.org/10.1155/2014/986048
    Zhao, Y. G., Ren, N. Q., Wang, A. J., 2008. Contributions of Fermentative Acidogenic Bacteria and Sulfate-Reducing Bacteria to Lactate Degra-dation and Sulfate Reduction. Chemosphere, 72(2):233-242. https://doi.org/10.1016/j.chemosphere.2008.01.046
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views(782) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return