Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 1
Feb 2015
Turn off MathJax
Article Contents
Fuzong Zhou, Xiuhua Zheng. Heat Transfer in Tubing-Casing Annulus during Production Process of Geothermal Systems. Journal of Earth Science, 2015, 26(1): 116-123. doi: 10.1007/s12583-015-0511-5
Citation: Fuzong Zhou, Xiuhua Zheng. Heat Transfer in Tubing-Casing Annulus during Production Process of Geothermal Systems. Journal of Earth Science, 2015, 26(1): 116-123. doi: 10.1007/s12583-015-0511-5

Heat Transfer in Tubing-Casing Annulus during Production Process of Geothermal Systems

doi: 10.1007/s12583-015-0511-5
More Information
  • Corresponding author: Fuzong Zhou, zhoufuzong@googlemail.com
  • Received Date: 21 Mar 2014
  • Accepted Date: 10 Jul 2014
  • Publish Date: 01 Jan 2015
  • In geothermal systems, the temperature distribution of heat flow in the wellbore is dependent on the well structure and the geological conditions of the surrounding formation. Understanding of heat transfer in the tubing-casing annulus can reduce the heat losses of wellbore fluid during the production process. The present study discusses the possible means of heat transfer in the annulus, and develops a piecewise equation for estimating the convective heat transfer coefficient with a wider valid condition of 0 < Ra < 7.17×108. By converting the radiation and natural convection into equivalent thermal conduction, their sum is defined as a total thermal conductivity to describe the heat transfer in the annulus. The results indicate that the annulus filled with gas can be utilized as a good thermal barrier for the fluid in the wellbore. Additionally, the contribution of radiation will increase to occupy a majority proportion in the total thermal conductivity when the annular size increases and the materials have high emissivity. Otherwise, thermal radiation is just the second factor.

     

  • loading
  • Akpan, A. E., 2014. Estimation of Subsurface Temperatures in the Tattapani Geothermal Field, Central India, from Limited Volume of Magnetotelluric Data and Borehole Thermograms Using a Constructive Back-Propagation Neural Network. Earth Interactions, 18: 1-26 http://adsabs.harvard.edu/abs/2014EaInt..18f...1A
    Deguen, R., 2013. Thermal Convection in a Spherical Shell with Melting/Freezing at either or both of Its Boundaries. Journal of Earth Science, 24(5): 669-682 doi: 10.1007/s12583-013-0364-8
    Dropkin, D., Somercales, E., 1965. Heat Transfer by Natural Convection in Liquids Confined by Two Parallel Plates Which are Inclined at Various Angles with Respect to Horizontal. Journal of Heat Transfer, 87: 77 doi: 10.1115/1.3689057
    Durucan, E., Olcenoglu, K., 1970. Geothermal Drilling and Preliminary Test Operations at Kizildere, Turkey. Geothermics, 2: 1463-1466 doi: 10.1016/0375-6505(70)90465-7
    Fishenden, M., Saunders, O. A., 1950. An Introduction to Heat Transfer (1st Ed. ). Oxford University Press, London. 103
    Gabolde, G., Nguyen, J. P., 1991. Drilling Data Handbook. Technip, Paris
    Gallup, D. L., 2009. Production Engineering in Geothermal Technology: A Review. Geothermics, 38: 326-334 doi: 10.1016/j.geothermics.2009.03.001
    Gorman, J. M., Abraham, J. P., Sparrow, E. M., 2014. A Novel, Comprehensive Numerical Simulation for Predicting Temperatures within Boreholes and the Adjoining Rock Bed. Geothermics, 50: 213-219 doi: 10.1016/j.geothermics.2013.10.001
    Grant, M. A., Bixley, P. F., 2011. Geothermal Reservoir Engineering (2nd Ed. ). Elservier, Oxford
    Hasan, A. R., Kabir, C. S., 2002. Fluid Flow and Heat Transfer in Wellbores. Society of Petroleum Engineers, Texas. 64-73
    Holman, J. P., 1981. Heat Transfer (5th Ed. ). McGraw-Hill, New York
    Incropera, F. P., DeWitt, D. P., Bergman, T. L., et al., 2001. Fundamentals of Heat and Mass Transfer (5th Ed. ). John Wiley & Sons, Hoboken
    Kanev, K., Ikeuchi, J., Kimura, S., et al., 1997. Heat Loss to the Surrounding Rock Formation from a Geothermal Wellbore. Geothermics, 26: 329-349 doi: 10.1016/S0375-6505(96)00046-6
    Kays, W. M., Leung, E. Y., 1963. Heat Transfer in Annular Passages-Hydrodynamically Developed Turbulent Flow with Arbitrarily Prescribed Heat Flux. International Journal of Heat and Mass Transfer, 6: 537-557 doi: 10.1016/0017-9310(63)90012-7
    Miyauchi, A., Kameyama, M., Ichikawa, H., 2014. Linear Stability Analysis on the Influences of the Spatial Variations in Thermal Conductivity and Expansivity on the Flow Patterns of Thermal Convection with Strongly Temperature-Dependent Viscosity. Journal of Earth Science, 25(1): 126-139 doi: 10.1007/s12583-014-0405-y
    Ramey, H. J., 1962. Wellbore Heat Transmission. Journal of Petroleum Technology, 14: 427-435 doi: 10.2118/96-PA
    Rohsenow, W. M., Hartnett, J. P., Cho, Y. I., 1998. Handbook of Heat Transfer (3rd Ed. ). McGraw-Hill, New York
    Schulz, S. U., 2008. Investigations on the Improvement of the Energy Output of a Closed Loop Geothermal System (CLGS): [Dissertation]. Technische Universität Berlin, Berlin
    Sheriff, N., 1966. Experimental Investigation of Natural Convection in Single and Multiple Vertical Annuli with High Pressure Carbon Dioxide. Proceedings of the Third International Heat Transfer Conference, Chicago, Illinois. 2: 132
    Tang, H. X., Zhang, J. B., Wang, T. Q., et al., 2010. Prediction for Temperature Distribution in Offshore High-Temperature Oilwells. Journal of Daqing Petroleum Institute, 34(3): 96-100 (in Chinese with English Abstract)
    Tekin, S., Akin, S., 2011. Estimation of the Formation Temperature from the Inlet and Outlet Mud Temperatures while Drilling Geothermal Formations. Proceedings of 36th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford
    Tóth, A., 2006. Heat Losses in a Planned Hungarian Geothermal Power Plant. Proceedings, Thirsty-First Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford
    Tóth, A., Bobok, E., 2008. Limits of Heat Transfer Extraction from Dry Hole. Proceedings, Thirty-Third Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford
    Willhite, G. P., 1967. Overall Heat Transfer Coefficients in Steam and Hot Water Injection Wells. Journal of Petroleum Technology, 19: 607-615 doi: 10.2118/1449-PA
    Willhite, G. P., Wilson, J. H., Martin, W. L., 1967. Use of an Insulating Fluid for Casing Protection during Steam Injection. Journal of Petroleum Technology, 19: 1453-1456 doi: 10.2118/1732-PA
    Wu, B., Zhang, X., Jeffrey, R. G., 2014. A Model for Downhole Fluid and Rock Temperature Prediction during Circulation. Geothermics, 50: 202-212 doi: 10.1016/j.geothermics.2013.10.004
    Yang, S. M., Tao, W. Q., 1998. Heat Transfer (3rd Ed. ). Higher Education Press, Beijing (in Chinese)
    Yang, X. W., Fan, H. H., Zhao, L. X., 2008. A New Way to Predict Borehole Flowing Temperature Distribution. Petroleum Geology & Oilfield Development in Daqing, 27(4): 76-81 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQSK200804024.htm
    Zhou, F., Zhang, X., 2013. Assessment of Heat Transfer in an Aquifer Utilizing Fractal Theory. Applied Thermal Engineering, 59(1-2): 445-453 doi: 10.1016/j.applthermaleng.2013.06.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views(960) PDF downloads(193) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return