Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 6
Nov 2015
Turn off MathJax
Article Contents
Jing Tan, Hongyi Li, Xinfu Li, Ming Zhou, Longbin Ouyang, Sanjian Sun, Dan Zheng. Radial anisotropy in the crust beneath the northeastern Tibetan Plateau from ambient noise tomography. Journal of Earth Science, 2015, 26(6): 864-871. doi: 10.1007/s12583-015-0543-x
Citation: Jing Tan, Hongyi Li, Xinfu Li, Ming Zhou, Longbin Ouyang, Sanjian Sun, Dan Zheng. Radial anisotropy in the crust beneath the northeastern Tibetan Plateau from ambient noise tomography. Journal of Earth Science, 2015, 26(6): 864-871. doi: 10.1007/s12583-015-0543-x

Radial anisotropy in the crust beneath the northeastern Tibetan Plateau from ambient noise tomography

doi: 10.1007/s12583-015-0543-x
More Information
  • Corresponding author: Hongyi Li, lih@cugb.edu.cn
  • Received Date: 23 Apr 2015
  • Accepted Date: 17 May 2015
  • Publish Date: 01 Dec 2015
  • Through analysis of Rayleigh wave and Love wave Green's functions estimated from ambient noise tomography, we obtain radial anisotropy and shear wave velocity structure beneath the northeastern Tibetan Plateau. With two hundred and twenty three broadband seismic stations deployed by China Earthquake Administration, a collaborative seismic experiment of northern Tibet (ACSENT) experiment and northeastern Tibet seismic (NETS) experiment provide the unprecedented opportunity to resolve the spatial distribution of the radial anisotropy within the crust of the northeastern Tibetan Plateau. Discrepancies between Love (sh) and Rayleigh (sv) wave velocities show complex anisotropic patterns associated with the dynamic processes of the collision between the Indian and Eurasian plates: (1) In the upper crust, Vsv > Vsh anisotropy is dominant throughout the study area which probably reflects fossil microcracks induced by the uplift, folding and erosion geodynamic processes; (2) in the middle crust, Vsh > Vsv observed beneath the Songpan-Ganzi terrane and the northwestern Qilian orogen correlates well with a mid-crustal low velocity zone (LVZ); (3) at depths deeper than 40 km, Vsh > Vsv is still found in the Songpan-Ganzi terrane. This anisotropy could be caused by the sub-horizontal alignment of anisotropic minerals that has followed the collision between India and Eurasia. However, the northwestern Qilian orogen is associated with Vsv > Vsh anisotropy which may be related to the vertically aligned seismic anisotropic minerals caused by the crustal thickening.

     

  • loading
  • Bao, X. W., Song, X. D., Xu, M. J., et al., 2013. Crust and Upper Mantle Structure of the North China Craton and the NE Tibetan Plateau and Its Tectonic Implications. Earth and Planetary Science Letters, 369/370: 129–137. doi: 10.1016/j.epsl.2013.03.015
    Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., et al., 2007. Processing Seismic Ambient Noise Data to Obtain Reliable Broad-Band Surface Wave Dispersion Measurements. Geophysical Journal International, 169: 1239–1260. doi: 10.1111/j.1365-246X.2007.03374.x
    Chang, L. J., Wang, C. Y., Ding, Z. F., et al., 2008. Seismic Anisotropy of Upper Mantle in the Northeastern Margin of the Tibetan Plateau. Chinese Journal of Geophysics, 51(2): 298–306. doi: 10.1002/cjg2.1220
    Chen, J. H., Liu, Q. Y., Li, S. C., et al., 2005. Crust and Upper Mantle S-Wave Velocity Structure across Northeastern Tibetan Plateau and Ordos Block. Chinese Journal Geophysics, 48(2): 333–342 (in Chinese with English Abstract) doi: 10.1002/cjg2.663/full
    Chen, Y., Badal, J., Zhang, Z. J., 2009. Radial Anisotropy in the Crust and Upper Mantle beneath the Qinghai-Tibet Plateau and Surrounding Regions. Journal of Asian Earth Sciences, 36: 289–302. doi: 10.1016/j.jseaes.2009.06.011
    Chen, Y., Badal, J., Hu, J. F., 2010. Love and Rayleigh Wave Tomography of the Qinghai-Tibet Plateau and Surrounding Areas. Pure and Applied Geophysics, 167: 1171–1203. doi: 10.1007/s00024-009-0040-1
    Cheng, C., Chen, L., Yao, H. J., et al., 2013. Distinct Variations of Crustal Shear Wave Velocity Structure and Radial Anisotropy beneath the North China Craton and Tectonic Implications. Gondwana Research, 23: 25–38. doi: 10.1016/j.gr.2012.02.014
    Dziewonski, A., Bloch, S., Landisman, M., 1969. A Technique for the Analysis of Transient Seismic Signals. Bulletin of the Seismological Society of America, 59: 427–444 doi: 10.1785/BSSA0590010427
    Flesch, L. M., Holt, W. E., Silver, P. G., et al., 2005. Constraining the Extent of Crust-Mantle Coupling in Central Asia Using GPS, Geologic, and Shear-Wave Splitting Data. Earth and Planetary Science Letters, 238: 248–268. doi: 10.1016/j.epsl.2005.06.023
    Ge, X. H., Liu, J. L., 1999. Formation and Tectonic Background of the Northern Qilian Orogenic Belt. Earth Science Frontiers, 6(4): 223–230 (in Chinese with English Abstract) http://www.researchgate.net/publication/303243813_Formation_and_tectonic_background_of_the_Northern_Qilian_Orogenic_Belt
    Guo, Z., Gao, X., Wang, W., et al., 2012. Upper-and Mid-Crustal Radial Anisotropy beneath the Central Himalaya and Southern Tibet from Seismic Ambient Noise Tomography. Geophysical Journal International, 189(2): 1169–1182. doi: 10.1111/j.1365-246X.2012.05425.x
    Herrmann, R. B., 1973. Some Aspects of Band-Pass Filtering of Surface Waves. Bulletin of the Seismological Society of America, 63: 663–671 http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=63/2/663
    Huang, H., Yao, H. J., van der Hilst, R. D. V. D., 2010. Radial Anisotropy in the Crust of SE Tibet and SW China from Ambient Noise Interferometry. Geophysical Research Letters, 37(21): L21310. doi: 10.1029/2010GL044981
    Karplus, M. S., Zhao, W., Klemperer, S. L., et al., 2011. Injection of Tibetan Crust beneath the South Qaidam Basin: Evidence from INDEPTH IV Wide-Angle Seismic Data. Journal of Geophysical Research, 116: B07301. doi: 10.1029/2010JB007911
    Li, H. Y., Su, W., Wang, C. Y., et al., 2009. Ambient Noise Rayleigh Wave Tomography in Western Sichuan and Eastern Tibet. Earth and Planetary Science Letters, 282: 201–211. doi: 10.1016/j.epsl.2009.03.021
    Li, H. Y., Bernardi, F., Michelini, A., 2010. Surface Wave Dispersion Measurements from Ambient Seismic Noise Analysis in Italy. Geophysical Journal International, 180: 1242–1252. doi: 10.1111/j.1365-246X.2009.04476.x
    Li, H. Y., Li, S., Song, X. D., et al., 2012. Crustal and Uppermost Mantle Velocity Structure beneath Northwestern China from Seismic Ambient Noise Tomography. Geophysical Journal International, 188: 131–143. doi: 10.1111/j.1365-246X.2011.05205.x
    Liang, C. T., Song, X. D., 2006. A Low Velocity Belt beneath Northern and Eastern Tibetan Plateau from Pn Tomography. Geophysical Research Letters, 33: L22306. doi: 10.1029/2006GL027926
    Luo, Y., Xu, Y., Yang, Y., 2013. Crustal Radial Anisotropy beneath the Dabie Orogenic Belt from Ambient Noise Tomography. Geophysical Journal International, 195(2): 1149–1164. doi: 10.1093/gji/ggt281
    Niu, F. L., Li, J., 2011. Component Azimuths of the CEArray Stations Estimated from P-Wave Particle Motion. Earthquake Science, 24: 3–13. doi: 10.1007/s11589-011-0764-8
    Nishizawa, O., Yoshino, T., 2001. Seismic Velocity Anisotropy in Mica-Rich Rocks: An Inclusion Model. Geophysical Journal International, 145(1): 19–32. doi: 10.1111/j.1365-246X.2001.00331.x
    Pan, S. Z., Niu, F. L., 2011. Large Contrasts in Crustal Structure and Composition between the Ordos Plateau and the NE Tibetan Plateau from Receiver Function Analysis. Earth and Planetary Science Letters, 303: 291–298. doi: 10.1016/j.epsl.2011.01.007
    Pei, S. P., Zhao, J. M., Sun, Y. S., et al., 2007. Upper Mantle Seismic Velocities and Anisotropy in China Determined through Pn and Sn Tomography. Journal of Geophysical Research, 112: B05312. doi: 10.1029/2006JB004409
    Peng, Y. J., Huang, Z. X., Su, W., et al., 2007. Anisotropy in Crust and Upper Mantle beneath China Continent and Its Adjacent Seas. Chinese Journal of Geophysics, 50(3): 752–759 (in Chinese with English abstract) doi: 10.1002/cjg2.1080/full
    Shapiro, N. M., Ritzwoller, M. H., Molnar, P., et al., 2004. Thining and Flow of Tibetan Crust Constrained by Seismic Anisotropy. Science, 305(5681): 233–236 doi: 10.1126/science.1098276
    Wang, C. Y., Han, W. B., Wu, J. P., et al., 2007. Crustal Structure beneath the Eastern Margin of the Tibetan Plateau and Its Tectonic Implications. Journal of Geophysical Research, 112: B07307. doi: 10.1029/2005JB003873
    Wang, Q., Chung, S. L., Li, X. H., et al., 2012. Crustal Melting and Flow beneath Northern Tibet: Evidence from Mid-Miocene to Quaternary strongly Peraluminous Rhyolites in the Southern Kunlun Range. Journal of Petrology, 53(12): 2523–2566. doi: 10.1093/petrology/egs058
    Wang, X. B., Zhu, Y. T., Zhao, X. K., et al., 2009. Deep Conductivity Characteristics of the Longmen Shan, Eastern Qinghai-Tibet Plateau. Chinese Journal of Geophysics, 52(2): 564–571 (in Chinese with English Abstract) http://www.oalib.com/paper/1569069
    Wang, Y., 2001. Heat Flow Pattern and Lateral Variations of Lithosphere Strength in China Mainland: Constraints on Active Deformation. Physics of the Earth and Planetary Interiors, 126(3–4): 121–146 http://www.sciencedirect.com/science/article/pii/S0031920101002515
    Weiss, T., Siegesmund, S., Rabbel, W., et al., 1999. Seismic Velocities and Anisotropy of the Lower Continental Crust: A Review. Pure and Applied Geophysics, 156: 97–122 doi: 10.1007/s000240050291
    Xu, Y., Liu, F. T., Liu, J. H., et al., 2000. Seismic Tomography beneath the Northwestern China Orogen and Adjacent Basins. Science in China Series D: Earth Sciences, 30(2): 113–122 (in Chinese)
    Yang, Y. J., Ritzwoller, M. H., Zheng, Y., et al., 2012. A Synoptic View of the Distribution and Connectivity of the Mid-Crustal Low Velocity Zone beneath Tibet. Journal of Geophysical Research, 117: B04303. doi: 10.1029/2011JB008810
    Yanovskaya, T. B., Kizima, E. S., Antonova, L. M., 1998. Structure of the Crust in the Black Sea and Adjoining Regions from Surface Wave Data. Journal of Seismology, 2(4): 303–316 doi: 10.1023/A:1009716017960
    Yue, H., Chen, J., Sandvol, E., et al., 2012. Lithospheric and Upper Mantle Structure of the Northeastern Tibetan Plateau. Journal of Geophysical Research, 117: B05307. doi: 10.1029/2011JB008545
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(4282) PDF downloads(775) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return