Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 27 Issue 3
Jun.  2016
Turn off MathJax
Article Contents

Yongfeng Zhu, Fang An, Wangyi Feng, Huichao Zhang. Geological Evolution and Huge Ore-Forming Belts in the Core Part of the Central Asian Metallogenic Region. Journal of Earth Science, 2016, 18(3): 491-506. doi: 10.1007/s12583-016-0673-7
Citation: Yongfeng Zhu, Fang An, Wangyi Feng, Huichao Zhang. Geological Evolution and Huge Ore-Forming Belts in the Core Part of the Central Asian Metallogenic Region. Journal of Earth Science, 2016, 18(3): 491-506. doi: 10.1007/s12583-016-0673-7

Geological Evolution and Huge Ore-Forming Belts in the Core Part of the Central Asian Metallogenic Region

doi: 10.1007/s12583-016-0673-7
  • Received Date: 2016-06-13
  • Rev Recd Date: 2016-06-13
  • Publish Date: 2016-06-13
  • The multi-stage geological evolution and extensive continental deformations during the course of its history make the Central Asian metallogenic region (CAMR) a unique and complicated large-scale metal domain. New geological observations and precise age-data allow an improved reconstruction of the geological evolution of the CAMR. This paper summarizes the Paleozoic orogenic evolution and related ore formation in the core part of the CAMR based on the geological data published both during the Soviet period and the last decades. Four ore-formation provinces (Altay, BalkhashJunggar, Chu-Yili-Tianshan, and Southwest Tianshan) could be classified. The Balkhash-Junggar and Chu-Yili-Tianshan provinces are the major topics of this paper. The Balkhash-Junggar province consists of 4 huge ore-forming belts (Zharma-Saur, Tarbahtay-Xiemistay, Aktogay-Baerluke, Balkhashwestern Junggar) with 11 large ore-college areas. The Chu-Yili-Tianshan province consists of 4 huge ore-forming belts (Alatau-Sairimu, Chu-Yili-Bolehuole, Issyk-Awulale, Kazharman-Nalaty) with 22 large ore-college areas. Formation of large ore-college area corresponds to a specific stage of continental crust growth. Comparison of geology and ore deposits in the CAMR provides rich information for future exploration and understanding of ore-forming processes. The Paleo-Junggar Ocean closed at Early Devonian in the Balkhash-western Junggar ore-forming belt. Afterwards, widespread volcanicsedimentary rocks formed at extensional stage due to delamination of the thick lower crust formed during previous accretionary processes. Felsic magma intrusion caused formation of porphyry Cu-Au deposit at ~310 Ma and related hydrothermal gold deposits about 10 Ma later. For example, in the Hatu-Baobei-Sartohay Au-Cr ore-college area in the Balkhash-western Junggar ore-forming belt, small granitic to diorite plutons and various dykes (312–277 Ma) and large granite bodies (~300 Ma) intruded into the Devonian to Early Carboniferous volcano-sedimentary basin. These magmatic activities and fault systems mainly controlled ore-forming processes.
  • 加载中
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(848) PDF downloads(186) Cited by()

Related
Proportional views

Geological Evolution and Huge Ore-Forming Belts in the Core Part of the Central Asian Metallogenic Region

doi: 10.1007/s12583-016-0673-7

Abstract: The multi-stage geological evolution and extensive continental deformations during the course of its history make the Central Asian metallogenic region (CAMR) a unique and complicated large-scale metal domain. New geological observations and precise age-data allow an improved reconstruction of the geological evolution of the CAMR. This paper summarizes the Paleozoic orogenic evolution and related ore formation in the core part of the CAMR based on the geological data published both during the Soviet period and the last decades. Four ore-formation provinces (Altay, BalkhashJunggar, Chu-Yili-Tianshan, and Southwest Tianshan) could be classified. The Balkhash-Junggar and Chu-Yili-Tianshan provinces are the major topics of this paper. The Balkhash-Junggar province consists of 4 huge ore-forming belts (Zharma-Saur, Tarbahtay-Xiemistay, Aktogay-Baerluke, Balkhashwestern Junggar) with 11 large ore-college areas. The Chu-Yili-Tianshan province consists of 4 huge ore-forming belts (Alatau-Sairimu, Chu-Yili-Bolehuole, Issyk-Awulale, Kazharman-Nalaty) with 22 large ore-college areas. Formation of large ore-college area corresponds to a specific stage of continental crust growth. Comparison of geology and ore deposits in the CAMR provides rich information for future exploration and understanding of ore-forming processes. The Paleo-Junggar Ocean closed at Early Devonian in the Balkhash-western Junggar ore-forming belt. Afterwards, widespread volcanicsedimentary rocks formed at extensional stage due to delamination of the thick lower crust formed during previous accretionary processes. Felsic magma intrusion caused formation of porphyry Cu-Au deposit at ~310 Ma and related hydrothermal gold deposits about 10 Ma later. For example, in the Hatu-Baobei-Sartohay Au-Cr ore-college area in the Balkhash-western Junggar ore-forming belt, small granitic to diorite plutons and various dykes (312–277 Ma) and large granite bodies (~300 Ma) intruded into the Devonian to Early Carboniferous volcano-sedimentary basin. These magmatic activities and fault systems mainly controlled ore-forming processes.

Yongfeng Zhu, Fang An, Wangyi Feng, Huichao Zhang. Geological Evolution and Huge Ore-Forming Belts in the Core Part of the Central Asian Metallogenic Region. Journal of Earth Science, 2016, 18(3): 491-506. doi: 10.1007/s12583-016-0673-7
Citation: Yongfeng Zhu, Fang An, Wangyi Feng, Huichao Zhang. Geological Evolution and Huge Ore-Forming Belts in the Core Part of the Central Asian Metallogenic Region. Journal of Earth Science, 2016, 18(3): 491-506. doi: 10.1007/s12583-016-0673-7

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return