Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 27 Issue 2
Mar 2016
Turn off MathJax
Article Contents
Haifeng Fan, Hanjie Wen, Xiangkun Zhu. Marine Redox Conditions in the Early Cambrian Ocean: Insights from the Lower Cambrian Phosphorite Deposits, South China. Journal of Earth Science, 2016, 27(2): 282-296. doi: 10.1007/s12583-016-0687-3
Citation: Haifeng Fan, Hanjie Wen, Xiangkun Zhu. Marine Redox Conditions in the Early Cambrian Ocean: Insights from the Lower Cambrian Phosphorite Deposits, South China. Journal of Earth Science, 2016, 27(2): 282-296. doi: 10.1007/s12583-016-0687-3

Marine Redox Conditions in the Early Cambrian Ocean: Insights from the Lower Cambrian Phosphorite Deposits, South China

doi: 10.1007/s12583-016-0687-3
More Information
  • Corresponding author: Hanjie Wen, wenhanjie@vip.gyig.ac.cn
  • Received Date: 31 Mar 2015
  • Accepted Date: 20 Nov 2015
  • Publish Date: 01 Apr 2016
  • It is generally considered that a significant change in oceanic redox conditions occurred during the Ediacaran-Cambrian transition. However, there are currently two major conflicting views on the degree of oxygenation of deep water (oxic vs. ferruginous) during this interval. To date, the oxygenation conditions of the Early Cambrian ocean have not been well constrained. The oxygenation magnitude and mechanism of the Early Cambrian ocean could be critical to the significant biological evolution of the "Cambrian Explosion". To constrain the Early Cambrian oceanic redox environment, we conducted an integrated study on iron and sulfur isotopes and redox-sensitive elements (Mo, U, and V) of Lower Cambrian phosphorite deposits from two shallow sections (Meishucun and Gezhongwu) and a deeper water section (Zunyi) from the Yangtze Platform, South China. The near zero δ56Fe values from the two shallow sections studied here reflect oxic conditions in the lower phosphorite deposition. An obvious positive shift in δ56Fe and redox-sensitive element content was observed in the middle parts of the two shallow water sections, which might reflect loss of light iron by dissimilatory iron reduction during early diagenesis under suboxic shallow water in the platform. However, the highly positive δ56Fe values in the deep section could reflect a lower oxidation degree of dissolved Fe(Ⅱ) under anoxic deep water. The data suggest redox-stratified oceanic conditions during the Early Cambrian, in which completely oxygenated shallow water (platform) coexisted with anoxic deep water (slope). We propose that prolonged upwelling of dissolved organic carbon (DOC)-, Fe(Ⅱ)- and phosphorus-rich anoxic deep water in a redox-stratified ocean could have increased exchange with the open ocean, resulting in major phosphorite deposition in oxic-suboxic conditions. The progressive oxygenation of the ocean may have facilitated the Early Cambrian biotic diversification.

     

  • loading
  • Anbar, A. D., Jarzecki, A. A., Spiro, T. G., 2005. Theoretical Investigation of Iron Isotope Fractionation between Fe(H2O)63+ and Fe(H2O)62+: Implications for Iron Stable Isotope Geochemistry. Geochimica et Cosmochimica Acta, 69(4): 825-837. DOI: 10.1016/j.gca.2004.06.012.
    Beard, B.L., Handler, R.M., Scherer, M.M., et al., 2010. Iron Isotope Fractionation between Aqueous Ferrous Iron and Goethite. Earth and Planetary Science Letters, 295(1-2), 241-250. DOI: 10.1016/j.epsl.2010.04.006.
    Beard, M. D., Johnson, C. M., Skulan, J. L., et al., 2003. Application of Fe Isotopes to Tracing the Geochemical and Biological Cycling of Fe. Chemical Geology, 195: 87-117. DOI: 10.1016/s0009-2541(02)00390-X.
    Bradley, A. S., Leavitt, W. D., Schmidt, M., et al., 2015. Patterns of sulfur isotope fractionation during Microbial Sulfate Reduction. Geobiology. DOI: 10.1111/gbi.12149
    Brasier, M. D., Magaritz, M., Corfield, R., et al., 1990. The Carbon- and Oxygen-Isotopic Record of the Precambrian-Cambrian Boundary Interval in China and Iran and Their Correlation. Geological Magazine, 127: 319-332. DOI: 10.1017/S0016756800014886.
    Butterfield, N. J., 2009. Oxygen, Animals and Oceanic Ventilation: An Alternative View. Geobiology, 7(1): 1-7. DOI: 10.1111/j.1472-4669.2009.0018.x.
    Canfield, D. E., 2005. The Early History of Atmospheric Oxygen: Homage to Robert M. Garrels. Annual Review of Earth and Planetary Sciences, 33: 1-36. DOI: 10.1146/annurex.earth.33.092203.122711.
    Canfield, D. E., Farquhar, J., Zerkle, A. L., 2010. High Isotope Fractionations during Sulfate Reduction in a Low-Sulfate Euxinic Ocean Analog. Geology, 38(5): 415-418. DOI: 10.1130/G30723.1.
    Canfield, D. E., Poulton, S. W., Knoll, A. H., et al., 2008. Ferruginous Conditions Dominated Later Neoproterozoic Deep-Water Chemistry. Science, 321(5891): 949-952. DOI: 10.1126/science.1154499.
    Canfield, D. E., Poulton, S. W., Narbonne, G. M., 2007. Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life. Science, 315(5808): 92-95. DOI: 10.1126/science.1135013.
    Canfield, D. E., Raiswell, R., Westrich, J. T., et al., 1986. The Use of Chromium Reduction in the Analysis of Reduced Inorganic Sulfur in Sediments and Shales. Chemical Geology, 54: 149-155. DOI: 10.1016/0009-2541(86)90078-1.
    Chen, Y. Q., Jiang, S. Y., Ling, H. F., et al., 2003, Pb-Pb Isotope Dating of Black Shales from the Lower Cambrian Niutitang Formation, Guizhou Province, South China. Progress in Natural Sciences, 13(10): 771-776. DOI: 10.1080/10020070312331344410.
    Claypool, G. E., Holster, W. T., Kaplan, I. R., et al., 1980. The Age Curves of Sulphur and Oxygen Isotopes in Marine Sulphate and Their Mutual Interpretation. Chemical Geology, 28: 199-260. DOI: 10.1016/0009-2541(80)90047-9.
    Cook, P. J., Shergold, J. H., 1984. Phosphorus, Phosphorite and Skeletal Evolution at the Ediacaran Cambrian Boundary. Nature, 308(5956): 231-236. DOI: 10.1038/308231a0.
    Craddock, P. R., Dauphas, N., 2011a. Iron Isotopic Compositions of Geological Reference Materials and Chondrites. Geostandards and Geoanalytical Research, 35(1): 101-123. DOI: 10.1111/j.1751-908X.2010.00085.x.
    Craddock, P. R., Dauphas, N., 2011b. Iron and Carbon Isotope Evidence for Microbial Iron Respiration throughout the Archean. Earth and Planetary Science Letters, 303(1-2): 121-132. DOI: 10.1016/j.epsl.2010.12.045.
    Croal, L. R., Johnson, C. M., Beard, B. L., et al., 2004. Iron Isotope Fractionation by Fe-Oxidizing Photoautotrophic Bacteria. Geochimica et Cosmochimica Acta, 68(6): 1227-1242. DOI: 10.1016/j.gca.2003.09.011.
    Czaja, A.D., Johnson, C.M., Beard, B.L., et al., 2010. Iron and Carbon Isotope Evidence for Ecosystem and Environmental Diversity in the ~2.7 to 2.5Ga Hamersley Province, Western Australia. Earth and Planetary Science Letters, 292: 170-180. DOI: 10.1016/j.epsl.2010.01.032.
    Dahl T. W., Boyle R. A., Canfield D. E., et al., 2014. Uranium Isotopes Distinguish Two Geochemically Distinct Stages during the Later Cambrian SPICE Event. Earth and Planetary Science Letters, 401, 313-326. DOI: 10.1016/j.epsl.2014.05.043.
    Eckert, S., Brumsacl, H. J., Severmann, S., et al., 2013. Establishment of Eucinix Conditions in the Holocene Black Sea. Geology, 41(4): 431-434. DOI: 10.1130/G33826.1.
    Feng, L.J., Li, C., Huang, J., et al., 2014. A sulfate control on marinemid-depth euxinia on the early Cambrian (ca. 529-521 Ma) Yangtze platform, South China. Precambrian Research, 246: 123-133. DOI: 10.1016/j.precamres.2014.03.002.
    Fike, D. A., Grotzinger, J. P., Pratt, L. M., et al., 2006. Oxidation of the Ediacaran Ocean. Nature, 444(7120): 744-747. DOI: 10.1038/nature05345.
    Frierdich, A.J., Beard, B.L., Reddy, T.R., et al., 2014a. Iron Isotope Fractionation between Aqueous Fe(Ⅱ) and Goethite Revisited: New Insights based on a Multi-Direction approach to Equilibrium and Isotopic Exchange Rate Modification. Geochimica et Cosmochimica Acta, 139: 383-398. DOI: 10.1016/j.gca.2014.05.001.
    Frierdich, A.J., Beard, B.L., Scherer, M.M., et al., 2014b. Determination of the Fe(Ⅱ)aq-Magnetite Equilibrium Iron Isotope Fractionation Factor Using the Three-Isotope Method and a Multi-Direction approach to Equilibrium. Earth and Planetary Science Letters, 391: 77-86. DOI: 10.1016/j.epsl.2014.01.032.
    Frost, C. D., von Blanckenburg, F., Schoenberg, R., et al., 2007. Preservation of Fe Isotope Heterogeneities during Diagenesis and Metamorphism of Banded Iron-Formation. Contributions to Mineralogy and Petrology, 153(2): 211-235. DOI: 10.1007/s00410-006-0141-0.
    Goldberg, T., Strauss, H., Guo, Q., et al., 2007. Reconstructing Marine Redox Conditions for the Early Cambrian Yangtze Platform: Evidence from Biogenic Sulphur and Organic Carbon Isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 175-193. DOI: 10.1016/j.palaeo.2007.03.015.
    Gradstein, F., Ogg, J., 2004. Geologic Time Scale 2004-Why, How, and Where Next. Lethaia, 37(2): 175-181. DOI: 10.1080/00241160410006483.
    Guo, Q. J., Shields, G. A., Liu, C. Q., et al., 2007. Trace Element Chemo Stratigraphy of Two Ediacaran-Cambrian Successions in South China: Implications for Organosedimentary Metal Enrichment and Silicification in the Early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 194-216. DOI: 10.1016/j.palaeo.2007.03.016.
    Habicht, K. S., Gade, M., Thamdrup, B., et al., 2002. Calibration of Sulfate Levels in the Archean Ocean. Science, 298(5602), 2372-2374. DOI: 10.1126/science.1078265.
    Heimann, A., Johnson, C.M., Beard, B.L., et al., 2010. Fe, C and O Isotope Compositions of Banded Iron Formation Carbonates Demonstrate a Major Role for Dissimilatory Iron Reduction in ~2.5Ga Marine Environments. Earth and Planetary Science Letters, 294(1-2): 8-18. DOI: 10.1016/j.epsl.2010.02.015.
    Ishikawa, T., Ueno, Y., Komiya, T., et al., 2008. Carbon Isotope Chemostratigraphy of a Precambrian/Cambrian Boundary Section in the Three Gorge Area, South China: Prominent Global-Scale Isotope Excursions just before the Cambrian Explosion. Gondwana Research, 14(1-2): 193-208. DOI: 10.1016/j.gr.2007.10.008.
    Jiang, G. Q., Wang, X. Q., Shi, X. Y., et al., 2012. The Origin of Decoupled Carbonate and Organic Carbon Isotope Signatures in the Early Cambrian (ca. 542-520 Ma) Yangtze platform. Earth and Planetary Science Letters, 317(2): 96-110. DOI: 10.1016/j.epsl.2011.11.018.
    Jiang, S. Y., Pi, D. H., Heubeck, C., et al., 2009. Early Cambrian ocean anoxia in South China. Nature, 459(7248): E5-E6. DOI: 10.1038/nature08048.
    Jiang, S. Y., Zhao, H. X., Chen, Y. Q., et al., 2007, Trace and Rare Earth Element Geochemistry of Phosphate Nodules from the Lower Cambrian Black Shale Sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China. Chemical Geology, 244: 584-604. DOI: 10.1016/j.chemgeo.2007.07.010.
    Johnson, C. M., Beard, B. L., Klein, C., et al., 2008, Iron Isotopes Constrain Biologic and Abiologic Processes in Banded Iron Formation Genesis. Geochimica et Cosmochimica Acta, 72(1): 151-169. DOI: 10.1016/j.gca.2007.10.013.
    Johnson, C. M., Beard, B. L., Roden, E. E., et al., 2004. Isotopic Constraints on Biogeochemical Cycling of Fe. Reviews in Mineralogy and Geochemistry, 55: 360-408. DOI: 10.2138/gsrmg.55.1.359.
    Johnson, C. M., Roden, E. E., Welch, S. A., et al., 2005. Experimental Constraints on Fe Isotope Fractionation during Magnetite and Fe Carbonate Formation Coupled to Dissimilatory Hydrous Ferric Oxide Reduction. Geochimica et Cosmochimica Acta, 69(4), 963-993. DOI: 10.1016/j.gca.2004.06.043.
    Knoll, A. H., Carroll, S. B., 1999. Early Animal Evolution: Emerging Views from Comparative Biology and Geology. Science, 284(5423): 2129-2137. DOI: 10.1126/science.284.5423.2129.
    Komiya, T., Hirata, T., Kitajima, K., et al., 2008. Evolution of the Composition of Seawater through Geologic Time, and Its Influence on Evolution of Life. Gondwana Research, 14(1-2): 159-174. DOI: 10.1016/j.gr.2007.10.006.
    Kump, L. R., 2008. The Rise of Atmospheric Oxygen. Nature, 451(7176): 277-278. DOI: 10.1038/nature06587.
    Li, C., Love, G. D., Lyons, T. W., et al., 2010, A Stratified Redox Model for the Ediacaran Ocean. Science, 328(5974): 80-83. DOI: 10.1126/science.1182369.
    Li, D., Ling, H. F., Shields-Zhou, G. A., et al., 2013. Carbon and Strontium Isotope Evolution of Seawater across the Ediacaran-Cambrian Transition: Evidence from the Xiaotan Section, NE Yunnan, South China. Precambrian Research, 225, 128-147. DOI: 10.1016/j.precamres.2012.01.002.
    Li, W. Q., Czaja, A. D., Van Kranendonk, M. J., et al., 2013. An Anoxic, Fe-Rich, U-Poor Ocean 3.46 Billion Years Ago. Geochimica et Cosmochimica Acta, 120: 65-79. DOI: 10.1016/j.gca.2013.06.033.
    Loyd, S. J., Marenco, P. J., Hagadorn, J. W., et al., 2012. Sustained Low Marine Sulfate Concentrations from the Neo-Proterozoic to the Cambrian: Insights from Carbonates of Northwestern Mexicoand Eastern California. Earth and Planetary Science Letters, 339(4): 79-94. DOI: 10.1016/j.epsl.2012.05.032.
    Luo, H., Jiang, Z., Wu, X., et al., 1984. The Sinian-Cambrian Boundary in Eastern Yunnan China. People's Publishing House, Yunnan, China. 154.
    Marshall, C. R., 2006. Explaining the Cambrian "Explosion" of Animals. Annual Review of Earth and Planetary Sciences, 34: 355-384 doi: 10.1146/annurev.earth.33.031504.103001
    Morford, J. L., Emerson, S. R., Breckel, E. J., et al., 2005. Diagenesis of Oxyanions (V, U, Re, and Mo) in Pore Waters and Sediments from a Continental Margin. Geochimica et Cosmochimica Acta, 69(21): 5021-5032. DOI: 10.1016/j.gca.2005.05.015.
    Nelson, G. J., Pufahl, P. K., Hiatt, E. E., 2010. Paleoceanographic Constraints on Precambrian Phosphorite Accumulation, Baraga Group, Michigan, USA. Sedimentary Geology, 226(1-4): 9-21. DOI: 10.1016/j.sedgeo.2010.02.001.
    Nie, W. M, Ma, D. S., Pan, J. Y., et al., 2006. δ13C Excursions of Phosphorite-Bearing Rocks in Peoproterozoic-Early Cambrian Interval in Guizhou, South China: Implications for Palaeoceanic Evolutions. Journal of Nanjing University (Natural Sciences), 42: 257-268 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJDZ200603002.htm
    Och, L. M., Shields-Zhou, G. A., 2012. The Neoproterozoic Oxygenation Event: Environmental Perturbations and Biogeochemical Cycling. Earth Science Review, 110(1): 26-57. DOI: 10.1016/j.earscirev.2011.09.004.
    Och, L. M., Shields-Zhou, G. A., Poulton, S. W., et al., 2013. Redox Changes in Early Cambrian Black Shales at Xiaotan Section, Yunnan Province, South China. Precambrian Research, 225: 166-189. DOI: 10.1016/j.precamres.2011.10.005.
    Pi, D. H., Liu, C. Q., Shields-Zhou, G. A., et al., 2013. Trace and Rare Earth Elementgeochemistry of Black Shale and Kerogen in the Early Cambrian Niutitang Formation in Guizhou Province, South China: Constraints for Redox Environmentsand Origin of Metal Enrichments. Precambrian Research, 225: 218-229. DOI: 10.1016/j.precamres.2011.07.004.
    Rothman, D. H., Hayes, J. M., Summons, R. E., 2003. Dynamics of the Neoproterozoic Carbon Cycle. Proceedings of the National Academy of Sciences, 100(14): 8124-8129. DOI: 10.1073/pnas.0832439100.
    Sahoo, S. K., Planavsky, N. J., Kendall, B., et al., 2012. Ocean Oxygenation in the Wake of the Marinoan Glaciation. Nature, 489(7417): 546-549. DOI: 10.1038/nature11445.
    Sawaki, Y., Nishizawa, M., Suo, T., et al., 2008. Internal Structures and U-Pb Ages of Zircons from a Tuff Layer in the Meishucunian Formation, Yunnan Province, South China. Gondwana Research, 14(1-2): 148-158. DOI: 10.1016/j.gr.2007.12.003.
    Scholz, F., Severmann, S., McManus, J., et al., 2014. On the Isotope Composition of Reactive Iron in Marine Sediments: Redox Shuttle Versus Early Diagenesis. Chemical Geology, 389: 48-59. DOI: 10.1016/j.chemgeo.2014.09.009.
    Scott, C., Lyons, T.W., Bekker, A., et al., 2008. Tracing the Stepwise Oxygenation of the Proterozoic Ocean. Nature, 452(7186): 457-460. DOI: 10.1038/nature06811.
    Severmann, S., Johnson, C.M., Beard, B.L., et al., 2006. The Effect of Early Diagenesis on the Fe Isotope Compositions of Porewaters and Authigenic Minerals in Continental Margin Sediments. Geochimica et Cosmochimica Acta, 70(8): 2006-2022. DOI: 10.1016/j.gca.2006.01.007.
    Shen, Y. A., Zhao, R., Chu, X. L., et al., 1998. The Carbon and Sulfur Isotope Signatures in the Precambrian-Cambrian Transition Series of the Yangtze Platform. Precambrian Research, 89(1-2): 77-86. DOI: 10.1016/S0301-9268(97)00081-8.
    Shi, C. H., 2004. Formation of Phosphorite Deposit, Breakup of Rodinia Supercontinent and Biology Explosion: A Case Study of Weng'an, Kaiyang and Zhjiin Phosphorite Deposits of Guizhou Province. A Dissertation Submitted to Chinese Aeademy of Sciences for a Master Degree. Guiyang (in Chinese with English Abstract)
    Shi, C. H., Hu, R. Z., 2005. REE Geochemistry of Early Cambrian Phosphorites from Gezhongwu Formation at Zhijin, Guizhou Province, China. Chinese Journal of Geochemistry, 24(2): 166-172 doi: 10.1007/BF02841161
    Shields, G. A., Strauss, H., Howe, S. S., et al., 1999. Sulphur Isotope Compositions of Sedimentary Phosphorites from the Basal Cambrian of China-Implications for Neoproterozoic-Cambrian Biogeochemical Cycling. Journal of the Geological Society, 156(5): 943-955. DOI: 10.1144/gsjgs.156.5.0943.
    Shields, G., Stille, P., 2001. Diagenetic Constraints on the Use of Cerium Anomalies as Palaeoseawater Redox Proxies: An Isotopic and REE Study of Cambrian Phosphorites. Chemical Geology, 175(1): 29-48. DOI: 10.1016/S0009-2541(00)00362-4.
    Shields-Zhou, G. A., Och, L., 2011. The Case for a Neoproterozoic Oxygenation Event: Geochemical Evidence and Biological Consequences. GSA Today, 21(3): 4-11. DOI: 10.1130/GSATG102A.1.
    Steiner, M., Wallis, E., Erdtmann, B., et al., 2001. Submarine-Hydrothermal Exhalative Ore Layers in Black Shales from South China and Associated Fossils Insights into a Lower Cambrian Facies and Bio-Evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 169(3): 165-191. DOI: 10.1016/S0031-0182(01)00208-5.
    Von Blanckenburg, F., Mamberti, M., Schoenberg, R., et al., 2008. The Iron Isotope Composition of Microbial Carbonate. Chemical Geology, 249(1-2): 113-128. DOI: 10.1016/j.chemgeo.2007.12.001.
    Wang, H. Y., Li, C., Hu, C. Y., et al., 2015. Spurious Thermoluminescence Characteristics of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) and Its Implications for Marine Dissolved Organic Carbon Reservoir. Journal of Earth Science, 26(6): 883-892 DOI: 10.1007/s12583-016-0650-3.
    Welch, S. A., Beard, B. L., Johnson, C. M., et al., 2003. Kinetic and Equilibrium Fe Isotope Fractionation between Aqueous Fe and Fe(Ⅲ). Geochimica et Cosmochimica Acta, 67(22): 4231-4250. DOI: 10.1016/S0016-7037(03)00266-7.
    Wen, H. J., Carignan, J., Zhang, Y. X., et al., 2011. Molybdenum Isotopic Records across the Ediacaran Cambrian Boundary. Geology, 39(8): 775-778. DOI: 10.1130/G32055.1.
    Wen, H., Carignan, J., Chu, X., et al., 2014. Selenium Isotopes Trace Anoxic and Ferruginous Seawater Conditions in the Early Cambrian. Chemical Geology, 390: 164-172. DOI: 10.1016/j.chemgeo.2014.10.022.
    Wiesli, R. A., Beard, B. L., Johnson, C. M., 2004. Experimental Determination of Fe Isotope Fractionation between Aqueous Fe, Siderite and "Green Rust" in Abiotic Systems. Chemical Geology, 211(3-4): 343-362. DOI: 10.1016/j.chemgeo.2004.07.002.
    Wille, M., Nagler, T. F., Lehmann, B., et al., 2008. Hydrogen Sulphide Release to Surface Waters at the Precambrian/Cambrian Boundary. Nature, 453(7196): 767-769. DOI: 10.1038/nature07072.
    Wu, L., Beard, B.L., Roden, E.E., et al., 2011. Stable Iron Isotope Fractionation between Aqueous Fe(Ⅱ) and Hydrous Ferric Oxide. Environmental Science and Technology, 45(5): 1847-1852. DOI: 10.1021/es103171x.
    Xu, L. G., Lehmann, B., Mao, J. W., et al., 2012. Mo Isotope and Trace Element Patterns of Lower Cambrian Black Shalesin South China: Multi-Proxy Constraints on the Paleoenvironment. Chemical Geology, 318(4): 45-59. DOI: 10.1016/j.chemgeo.2012.05.016.
    Yamaguchi, K. E., Johnson, C. M., Beard, B. L., et al., 2005. Biogeochemical Cycling of Iron in the Archean Paleoproterozoic Earth: Constraints from Iron Isotope Variations in Sedimentary Rocks from the Kaapvaal and Pilbara Cratons. Chemical Geology, 218: 135-169. DOI: 10.1016/j.chemgeo.2005.01.020.
    Yin, G. Z., Wang, Y. G., 1982. A Preliminary Study of Sinian-Cambrian Boundary in Guizhou Province. Journal of stratigraphy, 6: 286-293 (in Chinese).
    Zhao, X. M., Zhang, H. F., Zhu, X. K., et al., 2012. Iron Isotope Evidence for Multistage Melt-Peridotite Interactions in the Lithospheric Mantle of Eastern China. Chemical Geology, 292-293(23): 127-139. DOI: 10.1016/j.chemgeo.2011.11.016.
    Zhu, B., Jiang, S. Y., Yang, J. H., et al., 2014, Rare Earth Element and Sr-Nd Isotope Geochemistry of Phosphate Nodules from the Lower Cambrian Niutitang Formation, NW Hunan Province, South China, Palaeogeography, Palaeoclimatology, Palaeoecology, 398: 132-143. DOI: 10.1016/j.palaeo.2013.10.002.
    Zhu, R. X., Li, X. H., Hou, X. G., et al., 2009. SIMS U-Pb Zircon Age of a Tuff Layer in the Meishucun Section, Yunnan, Southwest China: Constraint on the Age of the Precambrian-Cambrian Boundary. Science in China Series D: Earth Sciences, 52: 1385-1392. DOI: 10.1007/s11430-009-0152-6.
    Zhu, X. K., Li, Z. H., Zhao, X. M., et al., 2008. High-Precision Measurements of Fe Isotopes Using MC-ICP-MS and Fe Isotope Compositions of Geological Reference Materials. Acta Petrologica et Mineralogica, 27: 263-272 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200804001.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views(769) PDF downloads(289) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return