Anders, E., Grevesse, N., 1989. Abundances of the Elements: Meteoritic and Solar. Geochimica et Cosmochimica Acta, 53(1): 197–214. doi: 10.1016/0016-7037(89)90286-x |
Asimow, P. D., Dixon, J. E., Langmuir, C. H., 2004. A Hydrous Melting and Fractionation Model for Mid-Ocean Ridge Basalts: Application to the Mid-Atlantic Ridge near the Azores. Geochemistry, Geophysics, Geosystems, 5(1): Q01E16. doi: 10.1029/2003gc000568 |
Asimow, P. D., Langmuir, C. H., 2003. The Importance of Water to Oceanic Mantle Melting Regimes. Nature, 421(6925): 815–820. doi: 10.1038/nature01429 |
Bédard, J. H., 2014. Parameterizations of Calcic Clinopyroxene-Melt Trace Element Partition Coefficients. Geochemistry, Geophysics, Geosystems, 15(2): 303–336. doi: 10.1002/2013gc005112 |
Bell, D. R., Ihinger, P. D., Rossman, G. R., 1995. Quantitative Analysis of Trace OH in Garnet and Pyroxenes. American Mineralogist, 80(5/6): 465–474. doi: 10.2138/am-1995-5-607 |
Bell, D. R., Rossman, G. R., 1992. Water in Earth's Mantle: The Role of Nominally Anhydrous Minerals. Science, 255(5050): 1391–1397. doi: 10.1126/science.255.5050.1391 |
Bézos, A., Lorand, J. P., Humler, E., et al., 2005. Platinum-Group Element Systematics in Mid-Oceanic Ridge Basaltic Glasses from the Pacific, Atlantic, and Indian Oceans. Geochimica et Cosmochimica Acta, 69(10): 2613–2627. doi: 10.1016/j.gca.2004.10.023 |
Bizimis, M., Peslier, A. H., 2015. Water in Hawaiian Garnet Pyroxenites: Implications for Water Heterogeneity in the Mantle. Chemical Geology, 397(2): 61–75. doi: 10.13039/501100004190 |
Breton, T., Nauret, F., Pichat, S., et al., 2013. Geochemical Heterogeneities within the Crozet Hotspot. Earth and Planetary Science Letters, 376: 126–136. doi: 10.1016/j.epsl.2013.06.020 |
Cannat, M., Sauter, D., Bezos, A., et al., 2008. Spreading Rate, Spreading Obliquity, and Melt Supply at the Ultraslow Spreading Southwest Indian Ridge. Geochemistry, Geophysics, Geosystems, 9(4): Q04002. doi: 10.1029/2007gc001676 |
Cannat, M., Sauter, D., Escartín, J., et al., 2009. Oceanic Corrugated Surfaces and the Strength of the Axial Lithosphere at Slow Spreading Ridges. Earth and Planetary Science Letters, 288(1/2): 174–183. doi: 10.1016/j.epsl.2009.09.020 |
Chen, T., Jin, Z. M., Shen, A. H., et al., 2016. Altered Spinel as a Petrotectonic Indicator in Abyssal Peridotite from the Easternmost Part of Southwest Indian Ridge. Journal of Earth Science, 27(4): 611–622. doi: 10.1007/s12583-016-0707-3 |
Danyushevsky, L. V., 2001. The Effect of Small Amounts of H2O on Crystallisation of Mid-Ocean Ridge and Backarc Basin Magmas. Journal of Volcanology and Geothermal Research, 110(3/4): 265–280. doi: 10.1016/s0377-0273(01)00213-x |
Danyushevsky, L. V., Eggins, S. M., Falloon, T. J., et al., 2000. H2O Abundance in Depleted to Moderately Enriched Mid-Ocean Ridge Magmas; Part Ⅰ: Incompatible Behaviour, Implications for Mantle Storage, and Origin of Regional Variations. Journal of Petrology, 41(8): 1329–1364. doi: 10.1093/petrology/41.8.1329 |
Danyushevsky, L. V., Falloon, T. J., Sobolev, A. V., et al., 1993. The H2O Content of Basalt Glasses from Southwest Pacific Back-Arc Basins. Earth and Planetary Science Letters, 117(3/4): 347–362. doi: 10.1016/0012-821x(93)90089-r |
Dick, H. J. B., Fisher, R. L., Bryan, W. B., 1984. Mineralogic Variability of the Uppermost Mantle along Mid-Ocean Ridges. Earth and Planetary Science Letters, 69(1): 88–106. doi: 10.1016/0012-821x(84)90076-1 |
Dick, H. J. B., Zhou, H. Y., 2015. Ocean Rises are Products of Variable Mantle Composition, Temperature and Focused Melting. Nature Geoscience, 8(1): 68–74. doi: 10.1038/ngeo2318 |
Dixon, J. E., Clague, D. A., 2001. Volatiles in Basaltic Glasses from Loihi Seamount, Hawaii: Evidence for a Relatively Dry Plume Component. Journal of Petrology, 42(3): 627–654. doi: 10.1093/petrology/42.3.627 |
Dixon, J. E., Clague, D. A., Wallace, P., et al., 1997. Volatiles in Alkalic Basalts Form the North Arch Volcanic Field, Hawaii: Extensive Degassing of Deep Submarine-Erupted Alkalic Series Lavas. Journal of Petrology, 38(7): 911–939. doi: 10.1093/petroj/38.7.911 |
Dixon, J. E., Leist, L., Langmuir, C., et al., 2002. Recycled Dehydrated Lithosphere Observed in Plume-Influenced Mid-Ocean-Ridge Basalt. Nature, 420(6914): 385–389. doi: 10.1038/nature01215 |
Dixon, J. E., Stolper, E. M., 1995. An Experimental Study of Water and Carbon Dioxide Solubilities in Mid-Ocean Ridge Basaltic Liquids. Part Ⅱ: Applications to Degassing. Journal of Petrology, 36(6): 1633–1646. doi: 10.1093/oxfordjournals.petrology.a037268 |
Dixon, J. E., Stolper, E. M., Delaney, J. R., 1988. Infrared Spectroscopic Measurements of CO2 and H2O in Juan de Fuca Ridge Basaltic Glasses. Earth and Planetary Science Letters, 90(1): 87–104. doi: 10.1016/0012-821x(88)90114-8 |
Dobson, P. F., Skogby, H., Rossman, G. R., 1995. Water in Boninite Glass and Coexisting Orthopyroxene: Concentration and Partitioning. Contributions to Mineralogy and Petrology, 118(4): 414–419. doi: 10.1007/s004100050023 |
Font, L., Murton, B. J., Roberts, S., et al., 2007. Variations in Melt Productivity and Melting Conditions along SWIR (70 E–49 E): Evidence from Olivine-Hosted and Plagioclase-Hosted Melt Inclusions. Journal of Petrology, 48(8): 1471–1494. doi: 10.1093/petrology/egm026 |
Gaetani, G. A., Grove, T. L., 1998. The Influence of Water on Melting of Mantle Peridotite. Contributions to Mineralogy and Petrology, 131(4): 323–346. doi: 10.1007/s004100050396 |
Gale, A., Dalton, C. A., Langmuir, C. H., et al., 2013. The Mean Composition of Ocean Ridge Basalts. Geochemistry, Geophysics, Geosystems, 14(3): 489–518. doi: 10.1029/2012gc004334 |
Gao, C. G., Dick, H. J. B., Liu, Y., et al., 2016. Melt Extraction and Mantle Source at a Southwest Indian Ridge Dragon Bone Amagmatic Segment on the Marion Rise. Lithos, 246/247: 48–60. doi: 10.13039/501100001809 |
Gibler, R., Peslier, A. H., Schaffer, L. A., et al., 2014. Water Content in the SW USA Mantle Lithosphere: FTIR Analysis of Dish Hill and Kilbourne Hole Pyroxenites. AGU Fall Meeting, San Francisco. DI21A-4260 |
Grant, K., Ingrin, J., Lorand, J. P., et al., 2007. Water Partitioning between Mantle Minerals from Peridotite Xenoliths. Contributions to Mineralogy and Petrology, 154(1): 15–34. doi: 10.1007/s00410-006-0177-1 |
Green, D. H., Hibberson, W. O., Kovács, I., et al., 2010. Water and Its Influence on the Lithosphere-Asthenosphere Boundary. Nature, 467(7314): 448–451. doi: 10.1038/nature09369 |
Hart, S. R., Dunn, T., 1993. Experimental Cpx/melt Partitioning of 24 Trace Elements. Contributions to Mineralogy and Petrology, 113(1): 1–8. doi: 10.1007/bf00320827 |
Hauri, E. H., Wagner, T. P., Grove, T. L., 1994. Experimental and Natural Partitioning of Th, U, Pb and Other Trace Elements between Garnet, Clinopyroxene and Basaltic Melts. Chemical Geology, 117(1/2/3/4): 149–166. doi: 10.1016/0009-2541(94)90126-0 |
Hesse, K. T., Gose, J., Stalder, R., et al., 2015. Water in Orthopyroxene from Abyssal Spinel Peridotites of the East Pacific Rise (ODP Leg 147: Hess Deep). Lithos, 232(6): 23–34. doi: 10.13039/501100001659 |
Hirschmann, M. M., 2006. Water, Melting, and the Deep Earth H2O Cycle. Annual Review of Earth and Planetary Sciences, 34(1): 629–653. doi: 10.1146/annurev.earth.34.031405.125211 |
Hirschmann, M. M., Tenner, T., Aubaud, C., et al., 2009. Dehydration Melting of Nominally Anhydrous Mantle: The Primacy of Partitioning. Physics of the Earth and Planetary Interiors, 176(1/2): 54–68. doi: 10.1016/j.pepi.2009.04.001 |
Hirth, G., Kohlstedt, D. L., 1996. Water in the Oceanic Upper Mantle: Implications for Rheology, Melt Extraction and the Evolution of the Lithosphere. Earth and Planetary Science Letters, 144(1/2): 93–108. doi: 10.1016/0012-821x(96)00154-9 |
Hochstaedter, A. G., Gill, J. B., Kusakabe, M., et al., 1990. Volcanism in the Sumisu Rift, I. Major Element, Volatile, and Stable Isotope Geochemistry. Earth and Planetary Science Letters, 100(1/2/3): 179–194. doi: 10.1016/0012-821x(90)90184-y |
Ingrin, J., Skogby, H., 2000. Hydrogen in Nominally Anhydrous Upper-Mantle Minerals: Concentration Levels and Implications. European Journal of Mineralogy, 12(3): 543–570. doi: 10.1127/ejm/12/3/0543 |
Javoy, M., Pineau, F., Allègre, C. J., 1982. Carbon Geodynamic Cycle. Nature, 300(5888): 171–173. doi: 10.1038/300171a0 |
Johnson, K. T. M., 1998. Experimental Determination of Partition Coefficients for Rare Earth and High-Field-Strength Elements between Clinopyroxene, Garnet, and Basaltic Melt at High Pressures. Contributions to Mineralogy and Petrology, 133(1/2): 60–68. doi: 10.1007/s004100050437 |
Jung, H., Karato, S.-I., 2001. Water-Induced Fabric Transitions in Olivine. Science, 293(5534): 1460–1463. doi: 10.1126/science.1062235 |
Kamenetsky, V. S., Eggins, S. M., Crawford, A. J., et al., 1998. Calcic Melt Inclusions in Primitive Olivine at 43°N MAR: Evidence for Melt-Rock Reaction/Melting Involving Clinopyroxene-Rich Lithologies during MORB Generation. Earth and Planetary Science Letters, 160(1/2): 115–132. doi: 10.1016/s0012-821x(98)00090-9 |
Katz, R. F., Spiegelman, M., Langmuir, C. H., 2003. A New Parameterization of Hydrous Mantle Melting. Geochemistry, Geophysics, Geosystems, 4(9): 1073. doi: 10.1029/2002gc000433 |
Kent, A. J. R., 2008. Melt Inclusions in Basaltic and Related Volcanic Rocks. Reviews in Mineralogy and Geochemistry, 69(1): 273–331. doi: 10.2138/rmg.2008.69.8 |
Kinzler, R. J., 1997. Melting of Mantle Peridotite at Pressures Approaching the Spinel to Garnet Transition: Application to Mid-Ocean Ridge Basalt Petrogenesis. Journal of Geophysical Research: Solid Earth, 102(B1): 853–874. doi: 10.1029/96jb00988 |
Klein, E. M., Langmuir, C. H., 1987. Global Correlations of Ocean Ridge Basalt Chemistry with Axial Depth and Crustal Thickness. Journal of Geophysical Research, 92(B8): 8089. doi: 10.1029/jb092ib08p08089 |
Koleszar, A. M., Saal, A. E., Hauri, E. H., et al., 2009. The Volatile Contents of the Galapagos Plume; Evidence for H2O and F Open System Behavior in Melt Inclusions. Earth and Planetary Science Letters, 287(3/4): 442–452. doi: 10.1016/j.epsl.2009.08.029 |
Kovács, I., Hermann, J., O'Neill, H. S. C., et al., 2008. Quantitative Absorbance Spectroscopy with Unpolarized Light: Part Ⅱ. Experimental Evaluation and Development of a Protocol for Quantitative Analysis of Mineral IR Spectra. American Mineralogist, 93(5/6): 765–778. doi: 10.2138/am.2008.2656 |
le Roux, P., le Roex, A., Schilling, J. G., 2002. MORB Melting Processes beneath the Southern Mid-Atlantic Ridge (40–55°S): A Role for Mantle Plume-Derived Pyroxenite. Contributions to Mineralogy and Petrology, 144(2): 206–229. doi: 10.1007/s00410-002-0376-3 |
Li, J., Jian, H., Chen, Y. J., et al., 2015. Seismic Observation of an Extremely Magmatic Accretion at the Ultraslow Spreading Southwest Indian Ridge. Geophysical Research Letters, 42(8): 2656–2663. doi: 10.1002/2014gl062521 |
Li, Z. X. A., Lee, C. T. A., Peslier, A. H., et al., 2008. Water Contents in Mantle Xenoliths from the Colorado Plateau and Vicinity: Implications for the Mantle Rheology and Hydration-Induced Thinning of Continental Lithosphere. Journal of Geophysical Research, 113(B9): 22. doi: 10.1029/2007jb005540 |
Ligi, M., Bonatti, E., Cipriani, A., et al., 2005. Water-Rich Basalts at Mid-Ocean-Ridge Cold Spots. Nature, 434(7029): 66–69. doi: 10.1038/nature03264 |
Liu, Y., Hu, Z., Gao, S. et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 342–43. doi: 10.1016/j.chemgeo.2008.08.004 |
McDonough, W. F., Ireland, T. R., 1993. Intraplate Origin of Komatiites Inferred from Trace Elements in Glassinclusions. Nature, 365(6445): 432–434. doi: 10.1038/365432a0 |
McKenzie, D. P., Bickle, M. J., 1988. The Volume and Composition of Melt Generated by Extension of the Lithosphere. Journal of Petrology, 29(3): 625–679. doi: 10.1093/petrology/29.3.625 |
Métrich, N., Zanon, V., Creon, L., et al., 2014. Is the 'Azores Hotspot' a Wetspot? Insights from the Geochemistry of Fluid and Melt Inclusions in Olivine of Pico Basalts. Journal of Petrology, 55(2): 377–393. doi: 10.1093/petrology/egt071 |
Meyzen, C. M., Toplis, M. J., Humler, E., et al., 2003. A Discontinuity in Mantle Composition beneath the Southwest Indian Ridge. Nature, 421(6924): 731–733. doi: 10.1038/nature01424 |
Michael, P. J., 1988. The Concentration, Behavior and Storage of H2O in the Suboceanic Upper Mantle: Implications for Mantle Metasomatism. Geochimica et Cosmochimica Acta, 52(2): 555–566. doi: 10.1016/0016-7037(88)90110-x |
Michael, P. J., 1995. Regionally Distinctive Sources of Depleted MORB: Evidence from Trace Elements and H2O. Earth and Planetary Science Letters, 131(3/4): 301–320. doi: 10.1016/0012-821x(95)00023-6 |
Nichols, A. R. L., Carroll, M. R., H skuldsson, ., 2002. Is the Iceland Hot Spot also Wet? Evidence from the Water Contents of Undegassed Submarine and Subglacial Pillow Basalts. Earth and Planetary Science Letters, 202(1): 77–87. doi: 10.1016/s0012-821x(02)00758-6 |
Niu, X. W., Ruan, A. G., Li, J. B., et al., 2015. Along-Axis Variation in Crustal Thickness at the Ultraslow Spreading Southwest Indian Ridge (50°E) from a Wide-Angle Seismic Experiment. Geochemistry, Geophysics, Geosystems, 16(2): 468–485. doi: 10.13039/501100001809 |
O'Leary, J. A., Gaetani, G. A., Hauri, E. H., 2010. The Effect of Tetrahedral Al3+ on the Partitioning of Water between Clinopyroxene and Silicate Melt. Earth and Planetary Science Letters, 297(1/2): 111–120. doi: 10.1016/j.epsl.2010.06.011 |
Peslier, A. H., Luhr, J. F., Post, J., 2002. Low Water Contents in Pyroxenes from Spinel-Peridotites of the Oxidized, Sub-Arc Mantle Wedge. Earth and Planetary Science Letters, 201(1): 69–86. doi: 10.1016/s0012-821x(02)00663-5 |
Peslier, A. H., Snow, J. E., Hellebrand, E., et al., 2007. Low Water Contents in Minerals from Gakkel Ridge Abyssal Peridotites, Arctic Ocean. Goldschmidt Conference, Cologne. A779 |
Plank, T., Kelley, K. A., Zimmer, M. M., et al., 2013. Why do Mafic Arc Magmas Contain∼4 wt.% Water on Average?. Earth and Planetary Science Letters, 364(26): 168–179. doi: 10.1016/j.epsl.2012.11.044 |
Robinson, C. J., Bickle, M. J., Minshull, T. A., et al., 2001. Low Degree Melting under the Southwest Indian Ridge: The Roles of Mantle Temperature, Conductive Cooling and Wet Melting. Earth and Planetary Science Letters, 188(3/4): 383–398. doi: 10.1016/s0012-821x(01)00329-6 |
Rommevaux-Jestin, C., Deplus, C., Patriat, P., 1997. Mantle Bouguer Anomaly along an Ultra Slow-Spreading Ridge: Implications for Accretionary Processes and Comparison with Results from Central Mid-Atlantic Ridge. Marine Geophysical Researches, 19(6): 481–503 doi: 10.1023/A:1004269003009 |
Saal, A. E., Hauri, E. H., Langmuir, C. H., et al., 2002. Vapour Undersaturation in Primitive Mid-Ocean-Ridge Basalt and the Volatile Content of Earth's Upper Mantle. Nature, 419(6906): 451–455 doi: 10.1038/nature01073 |
Sauter, D., Cannat, M., 2010. The Ultraslow Spreading Southwest Indian Ridge Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Geophysical Monograph Series, 188: 153–173 |
Sauter, D., Cannat, M., Meyzen, C., et al., 2009. Propagation of a Melting Anomaly along the Ultraslow Southwest Indian Ridge between 46°E and 52°20′E: Interaction with the Crozet Hotspot?. Geophysical Journal International, 179(2): 687–699. doi: 10.1111/j.1365-246x.2009.04308.x |
Seyler, M., Cannat, M., Mével, C., 2003. Evidence for Major-Element Heterogeneity in the Mantle Source of Abyssal Peridotites from the Southwest Indian Ridge (52° to 68°E). Geochemistry, Geophysics, Geosystems, 4(2): 9101. doi: 10.1029/2002gc000305 |
Shaw, A. M., Behn, M. D., Humphris, S. E., et al., 2010. Deep Pooling of Low Degree Melts and Volatile Fluxes at the 85°E Segment of the Gakkel Ridge: Evidence from Olivine-Hosted Melt Inclusions and Glasses. Earth and Planetary Science Letters, 289(3/4): 311–322. doi: 10.1016/j.epsl.2009.11.018 |
Simons, K., Dixon, J., Schilling, J. G., et al., 2002. Volatiles in Basaltic Glasses from the Easter-Salas y Gomez Seamount Chain and Easter Microplate: Implications for Geochemical Cycling of Volatile Elements. Geochemistry, Geophysics, Geosystems, 3(7): 1–29. doi: 10.1029/2001gc000173 |
Sisson, T. W., Layne, G. D., 1993. H2O in Basalt and Basaltic Andesite Glass Inclusions from Four Subduction-Related Volcanoes. Earth and Planetary Science Letters, 117(3/4): 619–635. doi: 10.1016/0012-821x(93)90107-k |
Skogby, H., Bell, D. R., Rossman, G. R., 1990. Hydroxide in Pyroxene: Variations in the Natural-Environment. American Mineralogist, 75(7/8): 764–774 |
Skogby, H., Rossman, G. R., 1989. OH in Pyroxene: An Experimental Study of Incorporation Mechanisms and Stability. American Mineralogist, 74: 1059–1069 |
Smith, W. H. F., Sandwell, D. T., 1997. Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings. Science, 277(5334): 1956–1962. doi: 10.1126/science.277.5334.1956 |
Sobolev, A. V., Chaussidon, M., 1996. H2O Concentrations in Primary Melts from Supra-Subduction Zones and Mid-Ocean Ridges: Implications for H2O Storage and Recycling in the Mantle. Earth and Planetary Science Letters, 137(1/2/3/4): 45–55. doi: 10.1016/0012-821x(95)00203-o |
Sobolev, A. V., Hofmann, A. W., Kuzmin, D. V., et al., 2007. The Amount of Recycled Crust in Sources of Mantle-Derived Melts. Science, 316(5823): 412–417. doi: 10.1126/science.1138113 |
Stolper, E., Newman, S., 1994. The Role of Water in the Petrogenesis of Mariana Trough Magmas. Earth and Planetary Science Letters, 121(3/4): 293–325. doi: 10.1016/0012-821x(94)90074-4 |
Sundvall, R., Stalder, R., 2011. Water in Upper Mantle Pyroxene Megacrysts and Xenocrysts: A Survey Study. American Mineralogist, 96(8/9): 1215–1227. doi: 10.2138/am.2011.3641 |
Tenner, T. J., Hirschmann, M. M., Withers, A. C., et al., 2012. H2O Storage Capacity of Olivine and Low-Ca Pyroxene from 10 to 13 GPa: Consequences for Dehydration Melting above the Transition Zone. Contributions to Mineralogy and Petrology, 163(2): 297–316. doi: 10.1007/s00410-011-0675-7 |
Wallace, P. J., 1998. Water and Partial Melting in Mantle Plumes: Inferences from the Dissolved H2O Concentrations of Hawaiian Basaltic Magmas. Geophysical Research Letters, 25(19): 3639–3642. doi: 10.1029/98gl02805 |
Wallace, P. J., 2005. Volatiles in Subduction Zone Magmas: Concentrations and Fluxes Based on Melt Inclusion and Volcanic Gas Data. Journal of Volcanology and Geothermal Research, 140(1/2/3): 217–240. doi: 10.1016/j.jvolgeores.2004.07.023 |
Wang, Y. F., Jin, Z. M., Shi, F., 2013. Characteristics of Hydroxyl in Lherzolite from Different Geological Setting. Earth Science––Journal of China University of Geosciences, 38(3): 489–500 (in Chinese with English Abstract) |
Wanless, V. D., Behn, M. D., Shaw, A. M., et al., 2014. Variations in Melting Dynamics and Mantle Compositions along the Eastern Volcanic Zone of the Gakkel Ridge: Insights from Olivine-Hosted Melt Inclusions. Contributions to Mineralogy and Petrology, 167(5): 1–22. doi: 10.1007/s00410-014-1005-7 |
Wanless, V. D., Shaw, A. M., 2012. Lower Crustal Crystallization and Melt Evolution at Mid-Ocean Ridges. Nature Geoscience, 5(9): 651–655. doi: 10.1038/ngeo1552 |
Wanless, V. D., Shaw, A. M., Behn, M. D., et al., 2015. Magmatic Plumbing at Lucky Strike Volcano Based on Olivine-Hosted Melt Inclusion Compositions. Geochemistry, Geophysics, Geosystems, 16(1): 126–147. doi: 10.1002/2014gc005517 |
Warren, J. M., Hauri, E. H., 2014. Pyroxenes as Tracers of Mantle Water Variations. Journal of Geophysical Research: Solid Earth, 119(3): 1851–1881. doi: 10.1002/2013jb010328 |
Warren, J. M., Shimizu, N., 2010. Cryptic Variations in Abyssal Peridotite Compositions: Evidence for Shallow-Level Melt Infiltration in the Oceanic Lithosphere. Journal of Petrology, 51(1/2): 395–423. doi: 10.1093/petrology/egp096 |
Warren, J. M., Shimizu, N., Sakaguchi, C., et al., 2009. An Assessment of Upper Mantle Heterogeneity Based on Abyssal Peridotite Isotopic Compositions. Journal of Geophysical Research, 114(B12): B12203. doi: 10.1029/2008jb006186 |
White, R. S., Minshull, T. A., Bickle, M. J., et al., 2001. Melt Generation at very Slow-Spreading Oceanic Ridges: Constraints from Geochemical and Geophysical Data. Journal of Petrology, 42(6): 1171–1196. doi: 10.1093/petrology/42.6.1171 |
Workman, R. K., Hart, S. R., 2005. Major and Trace Element Composition of the Depleted MORB Mantle (DMM). Earth and Planetary Science Letters, 231(1/2): 53–72. doi: 10.1016/j.epsl.2004.12.005 |
Xia, Q. K., Bi, Y., Li, P., et al., 2016. High Water Content in Primitive Continental Flood Basalts. Scientific Reports, 6(1): 25416. doi: 10.1038/srep25416 |
Xia, Q. K., Liu, J., Liu, S. C., et al., 2013. High Water Content in Mesozoic Primitive Basalts of the North China Craton and Implications on the Destruction of Cratonic Mantle Lithosphere. Earth and Planetary Science Letters, 361: 85–97. doi: 10.1016/j.epsl.2012.11.024 |
Yang, A. Y., Zhao, T. P., Zhou, M. F., et al., 2013. Os Isotopic Compositions of MORBs from the Ultra-Slow Spreading Southwest Indian Ridge: Constraints on the Assimilation and Fractional Crystallization (AFC) Processes. Lithos, 179(11): 28–35. doi: 10.1016/j.lithos.2013.07.020 |
Zhang, G. L., Zong, C. L., Yin, X. B., et al., 2012. Geochemical Constraints on a Mixed Pyroxenite-Peridotite Source for East Pacific Rise Basalts. Chemical Geology, 330/331(4): 176–187. doi: 10.1016/j.chemgeo.2012.08.033 |
Zhang, Y. X., Zindler, A., 1993. Distribution and Evolution of Carbon and Nitrogen in Earth. Earth and Planetary Science Letters, 117(3/4): 331–345. doi: 10.1016/0012-821x(93)90088-q |
Zhao, M. H., Qiu, X. L., Li, J. B., et al., 2013. Three-Dimensional Seismic Structure of the Dragon Flag Oceanic Core Complex at the Ultraslow Spreading Southwest Indian Ridge (49°39′E). Geochemistry, Geophysics, Geosystems, 14(10): 4544–4563. doi: 10.13039/501100001809 |
Zhou, H. Y., Dick, H. J. B., 2013. Thin Crust as Evidence for Depleted Mantle Supporting the Marion Rise. Nature, 494(7436): 195–200. doi: 10.1038/nature11842 |