Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 28 Issue 4
Jul 2017
Turn off MathJax
Article Contents
Takashi Nakagawa. On the Numerical Modeling of the Deep Mantle Water Cycle in Global-Scale Mantle Dynamics: The Effects of the Water Solubility Limit of Lower Mantle Minerals. Journal of Earth Science, 2017, 28(4): 563-577. doi: 10.1007/s12583-017-0755-3
Citation: Takashi Nakagawa. On the Numerical Modeling of the Deep Mantle Water Cycle in Global-Scale Mantle Dynamics: The Effects of the Water Solubility Limit of Lower Mantle Minerals. Journal of Earth Science, 2017, 28(4): 563-577. doi: 10.1007/s12583-017-0755-3

On the Numerical Modeling of the Deep Mantle Water Cycle in Global-Scale Mantle Dynamics: The Effects of the Water Solubility Limit of Lower Mantle Minerals

doi: 10.1007/s12583-017-0755-3
More Information
  • Corresponding author: Takashi Nakagawa, ntakashi@jamstec.go.jp
  • Received Date: 10 Mar 2017
  • Accepted Date: 17 Apr 2017
  • Publish Date: 01 Aug 2017
  • Water is the most important component in Earth system evolution. Here, I review the current understanding of the fate of water in the mantle dynamics system based on high-pressure and temperature experiments, geochemical analyses, seismological and geomagnetic observations, and numerical modeling of both regional-and global-scale mantle dynamics. In addition, as a numerical example, I show that the water solubility of the deep mantle is strongly sensitive to global-scale water circulation in the mantle. In a numerical example shown here, water solubility maps as functions of temperature and pressure are extremely important for revealing the hydrous structures in both the mantle transition zone and the deep mantle. Particularly, the water solubility limit of lower mantle minerals should be not so large as ~100 ppm for the mantle transition zone to get the largest hydrous reservoir in the global-scale mantle dynamics system. This result is consistent with the current view of mantle water circulation provided by mineral physics, which is also found as a hydrous basaltic crust in the deep mantle and the water enhancement of the mantle transition zone simultaneously. In this paper, I also discuss some unresolved issues associated with mantle water circulation, its influence on the onset and stability of plate motion, and the requirements for developing Earth system evolution in mantle dynamics simulations.

     

  • loading
  • Abe, Y., Matsui, T., 1988. Evolution of an Impact-Generated H2O-CO2 Atmosphere and Formation of a Hot Proto-Ocean on Earth. Journal of the Atmospheric Sciences, 45(21): 3081-3101. doi:10.1175/1520-0469(1988)045<3081:eoaigh>2.0.co;2
    Arcay, D., Tric, E., Doin, M. P., 2005. Numerical Simulations of Subduction Zones: Effect of Slab Dehydration on the Mantle Wedge Dynamics. Physics of the Earth and Planetary Interiors, 149(1/2): 133-153. doi: 10.1016/j.pepi.2004.08.020
    Arthur, M. A., Cole, D. R., 2014. Unconventional Hydrocarbon Resources: Prospects and Problems. Elements, 10(4): 257-264. doi: 10.2113/gselements.10.4.257
    Aubaud, C., Hirschmann, M. M., Withers, A. C., et al., 2008. Hydrogen Partitioning between Melt, Clinopyroxene, and Garnet at 3 GPa in a Hydrous MORB with 6 wt.% H2O. Contributions to Mineralogy and Petrology, 156(5): 607-625. doi: 10.1007/s00410-008-0304-2
    Bercovici, D., Karato, S.-I., 2003. Whole-Mantle Convection and the Transition-Zone Water Filter. Nature, 425(6953): 39-44. doi: 10.1038/nature01918
    Bercovici, D., Ricard, Y., 2014. Plate Tectonics, Damage and Inheritance. Nature, 508(7497): 513-516. doi: 10.1038/nature13072
    Bercovici, D., Ricard, Y., 2016. Grain-Damage Hysteresis and Plate Tectonic States. Physics of the Earth and Planetary Interiors, 253: 31-47. doi: 10.13039/100000001
    Bolfan-Casanova, N., 2005. Water in the Earth's Mantle. Mineralogical Magazine, 69(3): 229-258. doi: 10.1180/0026461056930248
    Christensen, U. R., Hofmann, A. W., 1994. Segregation of Subducted Oceanic Crust in the Convecting Mantle. Journal of Geophysical Research: Solid Earth, 99(B10): 19867-19884. doi: 10.1029/93jb03403
    Coltice, N., Rolf, T., Tackley, P. J., et al., 2012. Dynamic Causes of the Relation between Area and Age of the Ocean Floor. Science, 336(6079): 335-338. doi: 10.1126/science.1219120
    Condie, K. C., 2016. A Planet in Transition: The Onset of Plate Tectonics on Earth between 3 and 2 Ga?. Geoscience Frontiers, doi: 10.1016/j.gsf.2016.09.001
    Crameri, F., Tackley, P. J., Meilick, I., et al., 2012. A Free Plate Surface and Weak Oceanic Crust Produce Single-Sided Subduction on Earth. Geophysical Research Letters, 39(3): L03306. doi: 10.1029/2011gl050046
    Crowley, J. W., Gérault, M., O'Connell, R. J., 2011. On the Relative Influence of Heat and Water Transport on Planetary Dynamics. Earth and Planetary Science Letters, 310(3/4): 380-388. doi: 10.1016/j.epsl.2011.08.035
    Dasgupta, R., Hirschmann, M. M., 2010. The Deep Carbon Cycle and Melting in Earth's Interior. Earth and Planetary Science Letters, 298(1/2): 1-13. doi: 10.1016/j.epsl.2010.06.039
    de Smet, J. H., van den Berg, A. P., Vlaar, N. J., 1998. Stability and Growth of Continental Shields in Mantle Convection Models Including Recurrent Melt Production. Tectonophysics, 296(1/2): 15-29. doi: 10.1016/s0040-1951(98)00135-8
    Fei, H. Z., Wiedenbeck, M., Yamazaki, D., et al., 2013. Small Effect of Water on Upper-Mantle Rheology Based on Silicon Self-Diffusion Coefficients. Nature, 498(7453): 213-215. doi: 10.1038/nature12193
    Foley, B. J., Becker, T. W., 2009. Generation of Plate-Like Behavior and Mantle Heterogeneity from a Spherical, Viscoplastic Convection Model. Geochemistry, Geophysics, Geosystems, 10(8): Q08001. doi: 10.1029/2009gc002378
    Foley, B. J., Driscoll, P. E., 2016. Whole Planet Coupling between Climate, Mantle, and Core: Implications for Rocky Planet Evolution. Geochemistry, Geophysics, Geosystems, 17(5): 1885-1914. doi: 10.13039/100000104
    Franck, S., Kossacki, K. J., von Bloh, W., et al., 2002. Long-Term Evolution of the Global Carbon Cycle: Historic Minimum of Global Surface Temperature at Present. Tellus B, 54(4): 325-343. doi: 10.1034/j.1600-0889.2002.201377.x
    Fujita, K., Ogawa, M., 2013. A Preliminary Numerical Study on Water-Circulation in Convecting Mantle with Magmatism and Tectonic Plates. Physics of the Earth and Planetary Interiors, 216: 1-11. doi: 10.1016/j.pepi.2012.12.003
    Gaidos, E., Deschenes, B., Dundon, L., et al., 2005. Beyond the Principle of Plentitude: A Review of Terrestrial Planet Habitability. Astrobiology, 5(2): 100-126. doi: 10.1089/ast.2005.5.100
    Genda, H., 2016. Origin of Earth's Oceans: An Assessment of the Total Amount, History and Supply of Water. Geochemical Journal, 50(1): 27-42. doi: 10.2343/geochemj.2.0398
    Gerya, T. V., Connolly, J. A. D., Yuen, D. A., 2008. Why is Terrestrial Subduction One-Sided?. Geology, 36(1): 43. doi: 10.1130/g24060a.1
    Gerya, T. V., Stern, R. J., Baes, M., et al., 2015. Plate Tectonics on the Earth Triggered by Plume-Induced Subduction Initiation. Nature, 527(7577): 221-225. doi: 10.1038/nature15752
    Gerya, T., 2012. Origin and Models of Oceanic Transform Faults. Tectonophysics, 522/523: 34-54. doi: 10.1016/j.tecto.2011.07.006
    Gillmann, C., Golabek, G. J., Tackley, P. J., 2016. Effect of a Single Large Impact on the Coupled Atmosphere-Interior Evolution of Venus. Icarus, 268: 295-312. doi: 10.1016/j.icarus.2015.12.024
    Gillmann, C., Tackley, P., 2014. Atmosphere/Mantle Coupling and Feedbacks on Venus. Journal of Geophysical Research: Planets, 119(6): 1189-1217. doi: 10.1002/2013je004505
    Hamano, K., Abe, Y., Genda, H., 2013. Emergence of Two Types of Terrestrial Planet on Solidification of Magma Ocean. Nature, 497(7451): 607-610. doi: 10.1038/nature12163
    Hernlund, J. W., Tackley, P. J., 2008. Modeling Mantle Convection in the Spherical Annulus. Physics of the Earth and Planetary Interiors, 171(1/2/3/4): 48-54. doi: 10.1016/j.pepi.2008.07.037
    Hirschmann, M., Kohlstedt, D., 2012. Water in Earth's Mantle. Physics Today, 65(3): 40-45. doi: 10.1063/pt.3.1476
    Hopkins, M., Harrison, T. M., Manning, C. E., 2008. Low Heat Flow Inferred from > 4 Gyr Zircons Suggests Hadean Plate Boundary Interactions. Nature, 456(7221): 493-496. doi: 10.1038/nature07465
    Houser, C., 2016. Global Seismic Data Reveal Little Water in the Mantle Transition Zone. Earth and Planetary Science Letters, 448: 94-101. doi: 10.13039/100000001
    Inoue, T., Tanimoto, Y., Irifune, T., et al., 2004. Thermal Expansion of Wadsleyite, Ringwoodite, Hydrous Wadsleyite and Hydrous Ringwoodite. Physics of the Earth and Planetary Interiors, 143/144: 279-290. doi: 10.1016/j.pepi.2003.07.021
    Inoue, T., Weidner, D. J., Northrup, P. A., et al., 1998. Elastic Properties of Hydrous Ringwoodite (γ-Phase) in Mg2SiO4. Earth and Planetary Science Letters, 160(1/2): 107-113. doi: 10.1016/s0012-821x(98)00077-6
    Iwamori, H., 2004. Phase Relations of Peridotites under H2O-Saturated Conditions and Ability of Subducting Plates for Transportation of H2O. Earth and Planetary Science Letters, 227(1/2): 57-71. doi: 10.1016/j.epsl.2004.08.013
    Iwamori, H., 2007. Transportation of H2O beneath the Japan Arcs and Its Implications for Global Water Circulation. Chemical Geology, 239(3/4): 182-198. doi: 10.1016/j.chemgeo.2006.08.011
    Iwamori, H. , Nakakuki, T. , 2013. Fluid Processes in Subduction Zones and Water Transport to the Deep Mantle. In: Karato, S. -I. , ed. , Physics and Chemistry of the Deep Mantle. John Wiley, N. Y. . 372-391
    Jacobsen, S. D. , Smyth, J. R. , 2006. Effect of Water on the Sound Velocities of Ringwoodite in the Transition Zone. In: Jacobsen, S. D. , van der Lee, S. , eds. , Earth's Deep Water Cycle. Geophys. Monogr. Ser. 168. AGU, Washington, D. C. . 131-145
    Karato, S.-I., 2011. Water Distribution Across the Mantle Transition Zone and Its Implications for Global Material Circulation. Earth and Planetary Science Letters, 301(3/4): 413-423. doi: 10.1016/j.epsl.2010.11.038
    Karato, S.-I., Wu, P., 1993. Rheology of the Upper Mantle: A Synthesis. Science, 260(5109): 771-778. doi: 10.1126/science.260.5109.771
    Katz, R. F., Spiegelman, M., Langmuir, C. H., 2003. A New Parameterization of Hydrous Mantle Melting. Geochemistry, Geophysics, Geosystems, 4(9): 1073. doi: 10.1029/2002gc000433
    Kawamoto, T., 2006. Hydrous Phases and Water Transport in the Subducting Slab. Reviews in Mineralogy and Geochemistry, 62(1): 273-289. doi: 10.2138/rmg.2006.62.12
    Kelemen, P. B., Behn, M. D., 2016. Formation of Lower Continental Crust by Relamination of Buoyant Arc Lavas and Plutons. Nature Geoscience, 9(3): 197-205. doi: 10.1038/ngeo2662
    Keller, T., Tackley, P. J., 2009. Towards Self-Consistent Modeling of the Martian Dichotomy: The Influence of One-Ridge Convection on Crustal Thickness Distribution. Icarus, 202(2): 429-443. doi: 10.1016/j.icarus.2009.03.029
    Kohlstedt, D. L., Evans, B., Mackwell, S. J., 1995. Strength of the Lithosphere: Constraints Imposed by Laboratory Experiments. Journal of Geophysical Research: Solid Earth, 100(B9): 17587-17602. doi: 10.1029/95jb01460
    Kohlstedt, D. L., Keppler, H., Rubie, D. C., 1996. Solubility of Water in the α, β and γ Phases of (Mg, Fe)2SiO4. Contributions to Mineralogy and Petrology, 123(4): 345-357. doi: 10.1007/s004100050161
    Kohn, S. C., Grant, K. J., 2006. The Partitioning of Water between Nominally Anhydrous Minerals and Silicate Melts. Reviews in Mineralogy and Geochemistry, 62(1): 231-241. doi: 10.2138/rmg.2006.62.10
    Komabayashi, T., Omori, S., Maruyama, S., 2004. Petrogenetic Grid in the System MgO-SiO2-H2O up to 30 GPa, 1 600 ℃: Applications to Hydrous Peridotite Subducting into the Earth's Deep Interior. Journal of Geophysical Research, 109(B3). doi: 10.1029/2003jb002651
    Korenaga, J., 2011. Thermal Evolution with a Hydrating Mantle and the Initiation of Plate Tectonics in the Early Earth. Journal of Geophysical Research, 116(B12): B12403. doi: 10.1029/2011jb008410
    Korenaga, J., Karato, S.-I., 2008. A New Analysis of Experimental Data on Olivine Rheology. Journal of Geophysical Research, 113(B2): B02403. doi: 10.1029/2007jb005100
    Li, Z. X. A., Lee, C. T. A., Peslier, A. H., et al., 2008. Water Contents in Mantle Xenoliths from the Colorado Plateau and Vicinity: Implications for the Mantle Rheology and Hydration-Induced Thinning of Continental Lithosphere. Journal of Geophysical Research, 113(B9): B09210. doi: 10.1029/2007jb005540
    Mao, Z., Jacobsen, S. D., Jiang, F. M., et al., 2008. Single-Crystal Elasticity of Wadsleyites, Β-Mg2SiO4, Containing 0.37-1.66 wt.% H2O. Earth and Planetary Science Letters, 268(3/4): 540-549. doi: 10.1016/j.epsl.2008.01.023
    Maruyama, S., Okamoto, K., 2007. Water Transportation from the Subducting Slab into the Mantle Transition Zone. Gondwana Research, 11(1/2): 148-165. doi: 10.1016/j.gr.2006.06.001
    Mashino, I., Murakami, M., Ohtani, E., et al., 2016. Sound Velocities of Δ-AlOOH up to Core-Mantle Boundary Pressures with Implications for the Seismic Anomalies in the Deep Mantle. Journal of Geophysical Research: Solid Earth, 121(2): 595-609. doi: 10.1002/2015jb012477
    Matsuno, T., Suetsugu, D., Baba, K., et al., 2017. Mantle Transition Zone beneath a Normal Seafloor in the Northwestern Pacific: Electrical Conductivity, Seismic Thickness, and Water Content. Earth and Planetary Science Letters, 462: 189-198. doi: 10.13039/501100001691
    McGovern, P. J., Schubert, G., 1989. Thermal Evolution of the Earth: Effects of Volatile Exchange between Atmosphere and Interior. Earth and Planetary Science Letters, 96(1/2): 27-37. doi: 10.1016/0012-821x(89)90121-0
    Mei, S. H., Kohlstedt, D. L., 2000. Influence of Water on Plastic Deformation of Olivine Aggregates: 1. Diffusion Creep Regime. Journal of Geophysical Research: Solid Earth, 105(B9): 21457-21469. doi: 10.1029/2000jb900179
    Moresi, L., Solomatov, V., 1998. Mantle Convection with a Brittle Lithosphere: Thoughts on the Global Tectonic Styles of the Earth and Venus. Geophysical Journal International, 133(3): 669-682. doi: 10.1046/j.1365-246x.1998.00521.x
    Murakami, M., Hirose, K., Yurimoto, Y., et al., 2002. Water in Earth's Lower Mantle. Science, 295(5561): 1885-1887. doi: 10.1126/science.1065998
    Nakagawa, T., Nakakuki, T., Iwamori, H., 2015. Water Circulation and Global Mantle Dynamics: Insight from Numerical Modeling. Geochemistry, Geophysics, Geosystems, 16(5): 1449-1464. doi: 10.1002/2014gc005701
    Nakagawa, T., Spiegelman, M. W., 2017. Global-Scale Water Circulation in the Earth's Mantle: Implications for the Mantle Water Budget in the Early Earth. Earth and Planetary Science Letters, 464: 189-199. doi: 10.13039/501100001691
    Nakagawa, T., Tackley, P. J., 2011. Effects of Low-Viscosity Post-Perovskite on Thermo-Chemical Mantle Convection in a 3-D Spherical Shell. Geophysical Research Letters, 38(4): L04309. doi: 10.1029/2010gl046494
    Nakagawa, T., Tackley, P. J., 2015. Influence of Plate Tectonic Mode on the Coupled Thermochemical Evolution of Earth's Mantle and Core. Geochemistry, Geophysics, Geosystems, 16(10): 3400-3413. doi: 10.1002/2015gc005996
    Nakagawa, T., Tackley, P. J., Deschamps, F., et al., 2010. The Influence of MORB and Harzburgite Composition on Thermo-Chemical Mantle Convection in a 3-D Spherical Shell with Self-Consistently Calculated Mineral Physics. Earth and Planetary Science Letters, 296(3/4): 403-412. doi: 10.1016/j.epsl.2010.05.026
    Nakajima, J., Hasegawa, A., 2007. Tomographic Evidence for the Mantle Upwelling beneath Southwestern Japan and Its Implications for Arc Magmatism. Earth and Planetary Science Letters, 254(1/2): 90-105. doi: 10.1016/j.epsl.2006.11.024
    Nakajima, S., Hayashi, Y. Y., Abe, Y., 1992. A Study on the "Runaway Greenhouse Effect" with a One-Dimensional Radiative-Convective Equilibrium Model. Journal of the Atmospheric Sciences, 49(23): 2256-2266. doi:10.1175/1520-0469(1992)049<2256:asotge>2.0.co;2
    Nakajima, Y., Imada, S., Hirose, K., et al., 2015. Carbon-Depleted Outer Core Revealed by Sound Velocity Measurements of Liquid Iron-Carbon Alloy. Nature Communications, 6: 8942. doi: 10.1038/ncomms9942
    Nakao, A., Iwamori, H., Nakakuki, T., 2016. Effects of Water Transportation on Subduction Dynamics: Roles of Viscosity and Density Reduction. Earth and Planetary Science Letters, 454: 178-191. doi: 10.13039/501100001691
    Nisbet, E. G., Sleep, N. H., 2001. The Habitat and Nature of Early Life. Nature, 409(6823): 1083-1091. doi: 10.1038/35059210
    Nishi, M., Irifune, T., Tsuchiya, J., et al., 2014. Stability of Hydrous Silicate at High Pressures and Water Transport to the Deep Lower Mantle. Nature Geoscience, 7(3): 224-227. doi: 10.1038/ngeo2074
    O'Neill, C., Lenardic, A., Moresi, L., et al., 2007. Episodic Precambrian Subduction. Earth and Planetary Science Letters, 262(3/4): 552-562. doi: 10.1016/j.epsl.2007.04.056
    Ohira, I., Ohtani, E., Sakai, T., et al., 2014. Stability of a Hydrous Δ-Phase, AlOOH-MgSiO2(OH)2, and a Mechanism for Water Transport into the Base of Lower Mantle. Earth and Planetary Science Letters, 401: 12-17. doi: 10.13039/501100001691
    Ohtani, E., 2005. Water in the Mantle. Elements, 1(1): 25-30. doi: 10.2113/gselements.1.1.25
    Ohtani, E., Amaike, Y., Kamada, S., et al., 2014. Stability of Hydrous Phase H MgSiO4H2 under Lower Mantle Conditions. Geophysical Research Letters, 41(23): 8283-8287. doi: 10.13039/501100003443
    Ohtani, E., Maeda, M., 2001. Density of Basaltic Melt at High Pressure and Stability of the Melt at the Base of the Lower Mantle. Earth and Planetary Science Letters, 193(1/2): 69-75. doi: 10.1016/s0012-821x(01)00505-2
    Panero, W. R., Pigott, J. S., Reaman, D. M., et al., 2015. Dry (Mg, Fe)SiO3 Perovskite in the Earth's Lower Mantle. Journal of Geophysical Research: Solid Earth, 120(2): 894-908. doi: 10.1002/2014jb011397
    Pearson, D. G., Brenker, F. E., Nestola, F., et al., 2014. Hydrous Mantle Transition Zone Indicated by Ringwoodite Included within Diamond. Nature, 507(7491): 221-224. doi: 10.1038/nature13080
    Poirier, J. P., 1994. Light Elements in the Earth's Outer Core: A Critical Review. Physics of the Earth and Planetary Interiors, 85(3/4): 319-337. doi: 10.1016/0031-9201(94)90120-1
    Rey, P. F., Coltice, N., Flament, N., 2014. Spreading Continents Kick-Started Plate Tectonics. Nature, 513(7518): 405-408. doi: 10.1038/nature13728
    Richard, G., Monnereau, M., Ingrin, J., 2002. Is the Transition Zone an Empty Water Reservoir? Inferences from Numerical Model of Mantle Dynamics. Earth and Planetary Science Letters, 205(1/2): 37-51. doi: 10.1016/s0012-821x(02)01012-9
    Rolf, T., Coltice, N., Tackley, P. J., 2012. Linking Continental Drift, Plate Tectonics and the Thermal State of the Earth's Mantle. Earth and Planetary Science Letters, 351/352: 134-146. doi: 10.1016/j.epsl.2012.07.011
    Rüpke, L. , Morgan, J. P. , Dixon, J. E. , 2006. Implciations of Subduction Rehydration for Earth's Deep Water Cycle. In: Jacobsen, S. D. , van der Lee, S. , eds. , Earth's Deep Water Cycle. Geophys. Monogr. Ser. 168. AGU, Washington, D. C. . 263-276. doi: 10.102/168GM20
    Rüpke, L., Morgan, J. P., Hort, M., et al., 2004. Serpentine and the Subduction Zone Water Cycle. Earth and Planetary Science Letters, 223(1/2): 17-34. doi: 10.1016/j.epsl.2004.04.018
    Sandu, C., Lenardic, A., McGovern, P., 2011. The Effects of Deep Water Cycling on Planetary Thermal Evolution. Journal of Geophysical Research, 116(B12): B12404. doi: 10.1029/2011jb008405
    Schmandt, B., Jacobsen, S. D., Becker, T. W., et al., 2014. Dehydration Melting at the Top of the Lower Mantle. Science, 344(6189): 1265-1268. doi: 10.1126/science.1253358
    Tackley, P. J., 2000a. Self-Consistent Generation of Tectonic Plates in Time-Dependent, Three-Dimensional Mantle Convection Simulations-Part 1: Pseudo-Plastic Yielding. Geochemistry, Geophysics, Geosystems, 1(8): 1525. doi: 10.1029/2000gc000043
    Tackley, P. J., 2000b. Self-Consistent Generation of Tectonic Plates in Time-Dependent, Three-Dimensional Mantle Convection Simulations-Part 2: Strain Weakening and Asthenosphere. Geochemistry, Geophysics, Geosystems, 1(8): 1026. doi: 10.1029/2000gc000043
    Tackley, P. J., 2008. Modelling Compressible Mantle Convection with Large Viscosity Contrasts in a Three-Dimensional Spherical Shell Using the Yin-Yang Grid. Physics of the Earth and Planetary Interiors, 171(1/2/3/4): 7-18. doi: 10.1016/j.pepi.2008.08.005
    Tackley, P. J., 1996. Effects of Strongly Variable Viscosity on Three-Dimensional Compressible Convection in Planetary Mantles. Journal of Geophysical Research: Solid Earth, 101(B2): 3311-3332. doi: 10.1029/95jb03211
    Tajika, E., Matsui, T., 1992. Evolution of Terrestrial Proto-CO2 Atmosphere Coupled with Thermal History of the Earth. Earth and Planetary Science Letters, 113(1/2): 251-266. doi: 10.1016/0012-821x(92)90223-i
    Timm, O., Timmermann, A., Abe-Ouchi, A., et al., 2008. On the Definition of Seasons in Paleoclimate Simulations with Orbital Forcing. Paleoceanography, 23(2): PA2221. doi: 10.1029/2007pa001461
    Townsend, J. P., Tsuchiya, J., Bina, C. R., et al., 2016. Water Partitioning between Bridgmanite and Postperovskite in the Lowermost Mantle. Earth and Planetary Science Letters, 454: 20-27. doi: 10.13039/100007059
    Trampert, R., Hansen, U., 1998. Mantle Convection Simulations with Rheologies that Generate Plate-Like Behavior. Nature, 395: 686-689. doi: 10.1038/27185
    Trenberth, K. E., Fasullo, J. T., Kiehl, J., 2009. Earth's Global Energy Budget. Bulletin of the American Meteorological Society, 90(3): 311-323. doi: 10.1175/2008bams2634.1
    Umemoto, K., Hirose, K., 2015. Liquid Iron-Hydrogen Alloys at Outer Core Conditions by First-Principles Calculations. Geophysical Research Letters, 42(18): 7513-7520. doi: 10.1002/2015gl065899
    van Heck, H. J., Tackley, P. J., 2008. Planforms of Self-Consistently Generated Plates in 3D Spherical Geometry. Geophysical Research Letters, 35(19): L19312. doi: 10.1029/2008gl035190
    van Hunen, J., Moyen, J. F., 2012. Archean Subduction: Fact or Fiction?. Annual Review of Earth and Planetary Sciences, 40(1): 195-219. doi: 10.1146/annurev-earth-042711-105255
    van Keken, P. E., Hacker, B. R., Syracuse, E. M., et al., 2011. Subduction Factory: 4. Depth-Dependent Flux of H2O from Subducting Slabs Worldwide. Journal of Geophysical Research, 116(B1): B01401. doi: 10.1029/2010jb007922
    Wang, J. Y., Sinogeikin, S. V., Inoue, T., et al., 2006. Elastic Properties of Hydrous Ringwoodite at High-Pressure Conditions. Geophysical Research Letters, 33(14): L14308. doi: 10.1029/2006gl026441
    Wilson, C. R., Spiegelman, M., van Keken, P. E., et al., 2014. Fluid Flow in Subduction Zones: The Role of Solid Rheology and Compaction Pressure. Earth and Planetary Science Letters, 401: 261-274. doi: 10.13039/100000001
    Xie, S. X., Tackley, P. J., 2004. Evolution of U-Pb and Sm-Nd Systems in Numerical Models of Mantle Convection and Plate Tectonics. Journal of Geophysical Research: Solid Earth, 109(B11): B11204. doi: 10.1029/2004jb003176
    Yamazaki, D., Karato, S.-I., 2001. Some Mineral Physics Constraints on the Rheology and Geothermal Structure of Earth's Lower Mantle. American Mineralogist, 86(4): 385-391. doi: 10.2138/am-2001-0401
    Ye, Y., Brown, D. A., Smyth, J. R., et al., 2012. Compressibility and Thermal Expansion of Hydrous Ringwoodite with 2.5(3) wt% H2O. American Mineralogist, 97(4): 573-582. doi: 10.2138/am.2012.4010
    Zahnle, K., Arndt, N., Cockell, C., et al., 2007. Emergence of a Habitable Planet. Space Science Reviews, 129(1/2/3): 35-78. doi: 10.1007/s11214-007-9225-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views(12987) PDF downloads(631) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return