Alexandre, P., Hamilton, D., Barfod, D., 2006. The ARGUS Multicollection Noble Gas Mass Spectrometer. Geochimica et Cosmochimica Acta, 70(18): A8. https://doi.org/10.1016/j.gca.2006.06.1574 |
Bai, X. J., Wang, M., Jiang, Y. D., et al., 2013. Direct Dating of Tin-Tungsten Mineralization of the Piaotang Tungsten Deposit, South China, by 40Ar/39Ar Progressive Crushing. Geochimica et Cosmochimica Acta, 114: 1–12. https://doi.org/10.1016/j.gca.2013.03.022 |
Bai, X. J., Wang, M., Lu, K. H., et al., 2011. Direct Dating of Cassiterite by 40Ar/39Ar Progressive Crushing. Chinese Science Bulletin, 56(23): 1899–1904 (in Chinese) doi: 10.1360/972011-43 |
Barfod, D., Alexandre, P., Hamilton, D., 2006. The ARGUS Multicollection Noble Gas Mass Spectrometer. Geochimica et Cosmochimica Acta, 70(18): A34. https://doi.org/10.1016/j.gca.2006.06.177 |
Brereton, N. R., 1970. Corrections for Interfering Isotopes in the 40Ar/39Ar Dating Method. Earth and Planetary Science Letters, 8(6): 427–433. https://doi.org/10.1016/0012-821x(70)90146-9 |
Dalrymple, G. B., Alexander, E. C., Lanphere, M. A., et al., 1981. Irradiation of Samples for 40Ar/39Ar Dating Using the Geological Survey Triga Reactor. Professional Paper 1176. U. S. Geol. Surv., Washington |
Jiang, Y. D., Qiu, H. N., Xu, Y. G., 2012. Hydrothermal Fluids, Argon Isotopes and Mineralization Ages of the Fankou Pb-Zn Deposit in South China: Insights from Sphalerite 40Ar/39Ar Progressive Crushing. Geochimica et Cosmochimica Acta, 84: 369–379. https://doi.org/10.1016/j.gca.2012.01.044 |
Kendrick, M. A., Burgess, R., Pattrick, R. A. D., et al., 2001. Halogen and Ar-Ar Age Determinations of Inclusions within Quartz Veins from Porphyry Copper Deposits Using Complementary Noble Gas Extraction Techniques. Chemical Geology, 177(3/4): 351–370. https://doi.org/10.1016/s0009-2541(00)00419-8 |
Koppers, A. A. P., 2002. ArArCALC—Software for 40Ar/39Ar Age Calculations. Computers & Geosciences, 28(5): 605–619. https://doi.org/10.1016/s0098-3004(01)00095-4 |
Lederer, C. M., Shirley, V. S. E., 1978. Table of Isotopes, 7th Ed. Wiley, New York |
Lee, J.-Y., Marti, K., Severinghaus, J. P., et al., 2006. A Redetermination of the Isotopic Abundances of Atmospheric Ar. Geochimica et Cosmochimica Acta, 70(17): 4507–4512. https://doi.org/10.1016/j.gca.2006.06.1563 |
Liu, J., Wu, G., Qiu, H. N., et al., 2015. 40Ar/39Ar Dating, Fluid Inclusions and S-Pb Isotope Systematics of the Shabaosi Gold Deposit, Heilongjiang Province, China. Geological Journal, 50(5): 592–606. https://doi.org/10.1002/gj.2577 |
Mark, D. F., Barfod, D., Stuart, F. M., et al., 2009. The ARGUS Multicollector Noble Gas Mass Spectrometer: Performance for 40Ar/39Ar Geochronology. Geochemistry, Geophysics, Geosystems, 10(10). https://doi.org/10.1029/2009gc002643 |
Mark, D. F., Stuart, F. M., de Podesta, M., 2011. New High-Precision Measurements of the Isotopic Composition of Atmospheric Argon. Geochimica et Cosmochimica Acta, 75(23): 7494–7501. https://doi.org/10.1016/j.gca.2011.09.042 |
McDougall, I., Brown, F. H., Fleagle, J. G., 2005. Stratigraphic Placement and Age of Modern Humans from Kibish, Ethiopia. Nature, 433(7027): 733–736. https://doi.org/10.1038/nature03258 |
McDougall, I., Harrison, T. M., 1999. Geochronology and Termochronology by the 40Ar/39Ar Method (2nd Edition). Oxford University Press, New York |
Merrihue, C., Turner, G., 1966. Potassium-Argon Dating by Activation with Fast Neutrons. Journal of Geophysical Research, 71(11): 2852–2857. https://doi.org/10.1029/jz071i011p02852 |
Mitchell, J. G., 1968. The Argon-40/Argon-39 Method for Potassium-Argon Age Determination. Geochimica et Cosmochimica Acta, 32(7): 781–790. https://doi.org/10.1016/0016-7037(68)90012-4 |
Nier, A. O., 1950. A Redetermination of the Relative Abundances of the Isotopes of Carbon, Nitrogen, Oxygen, Argon, and Potassium. Physical Review, 77(6): 789–793. https://doi.org/10.1103/physrev.77.789 |
Pfänder, J. A., Sperner, B., Ratschbacher, L., et al., 2014. High-Resolution 40Ar/39Ar Dating Using a Mechanical Sample Transfer System Combined with a High-Temperature Cell for Step Heating Experiments and a Multicollector ARGUS Noble Gas Mass Spectrometer. Geochemistry, Geophysics, Geosystems, 15(6): 2713–2726. https://doi.org/10.1002/2014gc005289 |
Phillips, D., Miller, J. M., 2006. 40Ar/39Ar Dating of Mica-Bearing Pyrite from Thermally Overprinted Archean Gold Deposits. Geology, 34(5): 397–400. https://doi.org/10.1130/g22298.1 |
Qiu, H. N., 1996. 40Ar-39Ar Dating of the Quartz Samples from Two Mineral Deposits in Western Yunnan (SW China) by Crushing in Vacuum. Chemical Geology, 127(1/2/3): 211–222. https://doi.org/10.1016/0009-2541(95)00093-3 |
Qiu, H. N., Bai, X. J., Liu, W. G., et al., 2015. Automatic 40Ar/39Ar Dating Technique Using Multicollector ARGUSvi Ms with Home-Made Apparatus. Geochimica, 44(5): 477–484 (in Chinese with English Abstract) |
Qiu, H. N., Jiang, Y. D., 2007. Sphalerite 40Ar/39Ar Progressive Crushing and Stepwise Heating Techniques. Earth and Planetary Science Letters, 256(1/2): 224–232. https://doi.org/10.1016/j.epsl.2007.01.028 |
Qiu, H. N., Wijbrans, J. R., 2006. Paleozoic Ages and Excess 40Ar in Garnets from the Bixiling Eclogite in Dabieshan, China: New Insights from 40Ar/39Ar Dating by Stepwise Crushing. Geochimica et Cosmochimica Acta, 70(9): 2354–2370. https://doi.org/10.1016/j.gca.2005.11.030 |
Qiu, H. N., Wu, H. Y., Yun, J. B., et al., 2011. High-Precision 40Ar/39Ar Age of the Gas Emplacement into the Songliao Basin. Geology, 39(5): 451–454. https://doi.org/10.1130/g31885.1 |
Qiu, H. N., Zhu, B. Q., Sun, D. Z., 2002. Age Significance Interpreted from 40Ar-39Ar Dating of Quartz Samples from the Dongchuan Copper Deposits, Yunnan, SW China, by Crushing and Heating. Geochemical Journal, 36(5): 475–491. https://doi.org/10.2343/geochemj.36.475 |
Renne, P. R., Cassata, W. S., Morgan, L. E., 2009a. The Isotopic Composition of Atmospheric Argon and 40Ar/39Ar Geochronology: Time for a Change? Quaternary Geochronology, 4(4): 288–298. https://doi.org/10.1016/j.quageo.2009.02.015 |
Renne, P. R., Deino, A. L., Hames, W. E., et al., 2009b. Data Reporting Norms for 40Ar/39Ar Geochronology. Quaternary Geochronology, 4(5): 346–352. https://doi.org/10.1016/j.quageo.2009.06.005 |
Turner, G., 1971. Argon 40-Argon 39 Dating: The Optimization of Irradiation Parameters. Earth and Planetary Science Letters, 10(2): 227–234. https://doi.org/10.1016/0012-821x(71)90010-0 |
Turner, G., Bannon, M. P., 1992. Argon Isotope Geochemistry of Inclusion Fluids from Granite-Associated Mineral Veins in Southwest and Northeast England. Geochimica et Cosmochimica Acta, 56(1): 227–243. https://doi.org/10.1016/0016-7037(92)90128-6 |
Turner, G., Wang, S. S., 1992. Excess Argon, Crustal Fluids and Apparent Isochrons from Crushing K-Feldspar. Earth and Planetary Science Letters, 110(1/2/3/4): 193–211. https://doi.org/10.1016/0012-821x(92)90048-z |
Turrin, B. D., Swisher, C. C. Ⅲ, Deino, A. L., 2010. Mass Discrimination Monitoring and Intercalibration of Dual Collectors in Noble Gas Mass Spectrometer Systems. Geochemistry, Geophysics, Geosystems, 11(8). https://doi.org/10.1029/2009gc003013 |
Valkiers, S., Vendelbo, D., Berglund, M., et al., 2010. Preparation of Argon Primary Measurement Standards for the Calibration of Ion Current Ratios Measured in Argon. International Journal of Mass Spectrometry, 291(1/2): 41–47. https://doi.org/10.1016/j.ijms.2010.01.004 |
Wang, M., Bai, X. J., Hu, R. G., et al., 2015. Direct Dating of Cassiterite in Xitian Tungsten-Tin Polymetallic Deposit, South-East Hunan, by 40Ar/39Ar Progressive Crushing. Geotectonica et Metallogenia, 39(6): 1049–1060 (in Chinese with English Abstract) https://www.researchgate.net/publication/280311486_Dating_cassiterite_using_laser_ablation_ICP-MS |
Wang, M., Bai, X. J., Yun, J. B., et al., 2016. 40Ar/39Ar Dating of Mineralization of Shizhuyuan Polymetallic Deposit. Geochimica, 45(1): 41–51 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQHX201601003.htm |