Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 2
Mar 2018
Turn off MathJax
Article Contents
Xiu-Juan Bai, Hua-Ning Qiu, Wen-Gui Liu, Lian-Fu Mei. Automatic 40Ar/39Ar Dating Techniques Using Multicollector ARGUS Ⅵ Noble Gas Mass Spectrometer with Self-Made. Journal of Earth Science, 2018, 29(2): 408-415. doi: 10.1007/s12583-017-0948-9
Citation: Xiu-Juan Bai, Hua-Ning Qiu, Wen-Gui Liu, Lian-Fu Mei. Automatic 40Ar/39Ar Dating Techniques Using Multicollector ARGUS Ⅵ Noble Gas Mass Spectrometer with Self-Made. Journal of Earth Science, 2018, 29(2): 408-415. doi: 10.1007/s12583-017-0948-9

Automatic 40Ar/39Ar Dating Techniques Using Multicollector ARGUS Ⅵ Noble Gas Mass Spectrometer with Self-Made

doi: 10.1007/s12583-017-0948-9
More Information
  • Corresponding author: Hua-Ning Qiu, huaning.qiu@gmail.com
  • Received Date: 15 Mar 2017
  • Accepted Date: 05 Aug 2017
  • Publish Date: 01 Apr 2018
  • A new fully automatic 40Ar/39Ar laboratory with a Thermo Scientific© ARGUS Ⅵ mass spectrometer has been established in China University of Geosciences (Wuhan). We designed and developed a mini efficient preparation system (80 mL), a CO2 laser for heating samples, a crusher for extracting fluid inclusions within K-poor minerals and an air reservoir (31 L) and pipette (0.1 mL) system. The ARGUS Ⅵ mass spectrometer is operated by the Qtegra Noble Gas software, which can control the peripheral accessories, such as pneumatic valves, CO2 laser and crusher through a PeriCon (peripheral controller). The experimental procedures of atmospheric argon analyses, 40Ar/39Ar dating by laser stepwise heating and by progressive crushing in vacuo, can be fully automatically performed. The weighted mean of atmospheric 40Ar/36Ar ratios is 302.22±0.03 (1σ, MSWD=0.74, n=200), indicating that air reservoir and pipette system and the whole instrument system are very stable. This laboratory is a successful pioneer example in China to establish a new noble gas laboratory with self-made peripheral accessories expect for the mass spectrometer.

     

  • loading
  • Alexandre, P., Hamilton, D., Barfod, D., 2006. The ARGUS Multicollection Noble Gas Mass Spectrometer. Geochimica et Cosmochimica Acta, 70(18): A8. https://doi.org/10.1016/j.gca.2006.06.1574
    Bai, X. J., Wang, M., Jiang, Y. D., et al., 2013. Direct Dating of Tin-Tungsten Mineralization of the Piaotang Tungsten Deposit, South China, by 40Ar/39Ar Progressive Crushing. Geochimica et Cosmochimica Acta, 114: 1–12. https://doi.org/10.1016/j.gca.2013.03.022
    Bai, X. J., Wang, M., Lu, K. H., et al., 2011. Direct Dating of Cassiterite by 40Ar/39Ar Progressive Crushing. Chinese Science Bulletin, 56(23): 1899–1904 (in Chinese) doi: 10.1360/972011-43
    Barfod, D., Alexandre, P., Hamilton, D., 2006. The ARGUS Multicollection Noble Gas Mass Spectrometer. Geochimica et Cosmochimica Acta, 70(18): A34. https://doi.org/10.1016/j.gca.2006.06.177
    Brereton, N. R., 1970. Corrections for Interfering Isotopes in the 40Ar/39Ar Dating Method. Earth and Planetary Science Letters, 8(6): 427–433. https://doi.org/10.1016/0012-821x(70)90146-9
    Dalrymple, G. B., Alexander, E. C., Lanphere, M. A., et al., 1981. Irradiation of Samples for 40Ar/39Ar Dating Using the Geological Survey Triga Reactor. Professional Paper 1176. U. S. Geol. Surv., Washington
    Jiang, Y. D., Qiu, H. N., Xu, Y. G., 2012. Hydrothermal Fluids, Argon Isotopes and Mineralization Ages of the Fankou Pb-Zn Deposit in South China: Insights from Sphalerite 40Ar/39Ar Progressive Crushing. Geochimica et Cosmochimica Acta, 84: 369–379. https://doi.org/10.1016/j.gca.2012.01.044
    Kendrick, M. A., Burgess, R., Pattrick, R. A. D., et al., 2001. Halogen and Ar-Ar Age Determinations of Inclusions within Quartz Veins from Porphyry Copper Deposits Using Complementary Noble Gas Extraction Techniques. Chemical Geology, 177(3/4): 351–370. https://doi.org/10.1016/s0009-2541(00)00419-8
    Koppers, A. A. P., 2002. ArArCALC—Software for 40Ar/39Ar Age Calculations. Computers & Geosciences, 28(5): 605–619. https://doi.org/10.1016/s0098-3004(01)00095-4
    Lederer, C. M., Shirley, V. S. E., 1978. Table of Isotopes, 7th Ed. Wiley, New York
    Lee, J.-Y., Marti, K., Severinghaus, J. P., et al., 2006. A Redetermination of the Isotopic Abundances of Atmospheric Ar. Geochimica et Cosmochimica Acta, 70(17): 4507–4512. https://doi.org/10.1016/j.gca.2006.06.1563
    Liu, J., Wu, G., Qiu, H. N., et al., 2015. 40Ar/39Ar Dating, Fluid Inclusions and S-Pb Isotope Systematics of the Shabaosi Gold Deposit, Heilongjiang Province, China. Geological Journal, 50(5): 592–606. https://doi.org/10.1002/gj.2577
    Mark, D. F., Barfod, D., Stuart, F. M., et al., 2009. The ARGUS Multicollector Noble Gas Mass Spectrometer: Performance for 40Ar/39Ar Geochronology. Geochemistry, Geophysics, Geosystems, 10(10). https://doi.org/10.1029/2009gc002643
    Mark, D. F., Stuart, F. M., de Podesta, M., 2011. New High-Precision Measurements of the Isotopic Composition of Atmospheric Argon. Geochimica et Cosmochimica Acta, 75(23): 7494–7501. https://doi.org/10.1016/j.gca.2011.09.042
    McDougall, I., Brown, F. H., Fleagle, J. G., 2005. Stratigraphic Placement and Age of Modern Humans from Kibish, Ethiopia. Nature, 433(7027): 733–736. https://doi.org/10.1038/nature03258
    McDougall, I., Harrison, T. M., 1999. Geochronology and Termochronology by the 40Ar/39Ar Method (2nd Edition). Oxford University Press, New York
    Merrihue, C., Turner, G., 1966. Potassium-Argon Dating by Activation with Fast Neutrons. Journal of Geophysical Research, 71(11): 2852–2857. https://doi.org/10.1029/jz071i011p02852
    Mitchell, J. G., 1968. The Argon-40/Argon-39 Method for Potassium-Argon Age Determination. Geochimica et Cosmochimica Acta, 32(7): 781–790. https://doi.org/10.1016/0016-7037(68)90012-4
    Nier, A. O., 1950. A Redetermination of the Relative Abundances of the Isotopes of Carbon, Nitrogen, Oxygen, Argon, and Potassium. Physical Review, 77(6): 789–793. https://doi.org/10.1103/physrev.77.789
    Pfänder, J. A., Sperner, B., Ratschbacher, L., et al., 2014. High-Resolution 40Ar/39Ar Dating Using a Mechanical Sample Transfer System Combined with a High-Temperature Cell for Step Heating Experiments and a Multicollector ARGUS Noble Gas Mass Spectrometer. Geochemistry, Geophysics, Geosystems, 15(6): 2713–2726. https://doi.org/10.1002/2014gc005289
    Phillips, D., Miller, J. M., 2006. 40Ar/39Ar Dating of Mica-Bearing Pyrite from Thermally Overprinted Archean Gold Deposits. Geology, 34(5): 397–400. https://doi.org/10.1130/g22298.1
    Qiu, H. N., 1996. 40Ar-39Ar Dating of the Quartz Samples from Two Mineral Deposits in Western Yunnan (SW China) by Crushing in Vacuum. Chemical Geology, 127(1/2/3): 211–222. https://doi.org/10.1016/0009-2541(95)00093-3
    Qiu, H. N., Bai, X. J., Liu, W. G., et al., 2015. Automatic 40Ar/39Ar Dating Technique Using Multicollector ARGUSvi Ms with Home-Made Apparatus. Geochimica, 44(5): 477–484 (in Chinese with English Abstract)
    Qiu, H. N., Jiang, Y. D., 2007. Sphalerite 40Ar/39Ar Progressive Crushing and Stepwise Heating Techniques. Earth and Planetary Science Letters, 256(1/2): 224–232. https://doi.org/10.1016/j.epsl.2007.01.028
    Qiu, H. N., Wijbrans, J. R., 2006. Paleozoic Ages and Excess 40Ar in Garnets from the Bixiling Eclogite in Dabieshan, China: New Insights from 40Ar/39Ar Dating by Stepwise Crushing. Geochimica et Cosmochimica Acta, 70(9): 2354–2370. https://doi.org/10.1016/j.gca.2005.11.030
    Qiu, H. N., Wu, H. Y., Yun, J. B., et al., 2011. High-Precision 40Ar/39Ar Age of the Gas Emplacement into the Songliao Basin. Geology, 39(5): 451–454. https://doi.org/10.1130/g31885.1
    Qiu, H. N., Zhu, B. Q., Sun, D. Z., 2002. Age Significance Interpreted from 40Ar-39Ar Dating of Quartz Samples from the Dongchuan Copper Deposits, Yunnan, SW China, by Crushing and Heating. Geochemical Journal, 36(5): 475–491. https://doi.org/10.2343/geochemj.36.475
    Renne, P. R., Cassata, W. S., Morgan, L. E., 2009a. The Isotopic Composition of Atmospheric Argon and 40Ar/39Ar Geochronology: Time for a Change? Quaternary Geochronology, 4(4): 288–298. https://doi.org/10.1016/j.quageo.2009.02.015
    Renne, P. R., Deino, A. L., Hames, W. E., et al., 2009b. Data Reporting Norms for 40Ar/39Ar Geochronology. Quaternary Geochronology, 4(5): 346–352. https://doi.org/10.1016/j.quageo.2009.06.005
    Sigurgeirsson, T., 1962. Age Dating of Young Basalts with the Potassium-Argon Method (in Icelandic). Unpublished Report Physics Laboratory. University of Iceland, Iceland
    Turner, G., 1971. Argon 40-Argon 39 Dating: The Optimization of Irradiation Parameters. Earth and Planetary Science Letters, 10(2): 227–234. https://doi.org/10.1016/0012-821x(71)90010-0
    Turner, G., Bannon, M. P., 1992. Argon Isotope Geochemistry of Inclusion Fluids from Granite-Associated Mineral Veins in Southwest and Northeast England. Geochimica et Cosmochimica Acta, 56(1): 227–243. https://doi.org/10.1016/0016-7037(92)90128-6
    Turner, G., Wang, S. S., 1992. Excess Argon, Crustal Fluids and Apparent Isochrons from Crushing K-Feldspar. Earth and Planetary Science Letters, 110(1/2/3/4): 193–211. https://doi.org/10.1016/0012-821x(92)90048-z
    Turrin, B. D., Swisher, C. C. Ⅲ, Deino, A. L., 2010. Mass Discrimination Monitoring and Intercalibration of Dual Collectors in Noble Gas Mass Spectrometer Systems. Geochemistry, Geophysics, Geosystems, 11(8). https://doi.org/10.1029/2009gc003013
    Valkiers, S., Vendelbo, D., Berglund, M., et al., 2010. Preparation of Argon Primary Measurement Standards for the Calibration of Ion Current Ratios Measured in Argon. International Journal of Mass Spectrometry, 291(1/2): 41–47. https://doi.org/10.1016/j.ijms.2010.01.004
    Wang, M., Bai, X. J., Hu, R. G., et al., 2015. Direct Dating of Cassiterite in Xitian Tungsten-Tin Polymetallic Deposit, South-East Hunan, by 40Ar/39Ar Progressive Crushing. Geotectonica et Metallogenia, 39(6): 1049–1060 (in Chinese with English Abstract) https://www.researchgate.net/publication/280311486_Dating_cassiterite_using_laser_ablation_ICP-MS
    Wang, M., Bai, X. J., Yun, J. B., et al., 2016. 40Ar/39Ar Dating of Mineralization of Shizhuyuan Polymetallic Deposit. Geochimica, 45(1): 41–51 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQHX201601003.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views(838) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return