Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 6
Nov 2018
Turn off MathJax
Article Contents
Anatoly M. Belyaev. Paleoproterozoic Underwater Volcanism and Microfossil-Like Structures in the Metasedimentary Siliceous Rocks, Hogland Island, Russia. Journal of Earth Science, 2018, 29(6): 1431-1442. doi: 10.1007/s12583-018-0883-4
Citation: Anatoly M. Belyaev. Paleoproterozoic Underwater Volcanism and Microfossil-Like Structures in the Metasedimentary Siliceous Rocks, Hogland Island, Russia. Journal of Earth Science, 2018, 29(6): 1431-1442. doi: 10.1007/s12583-018-0883-4

Paleoproterozoic Underwater Volcanism and Microfossil-Like Structures in the Metasedimentary Siliceous Rocks, Hogland Island, Russia

doi: 10.1007/s12583-018-0883-4
More Information
  • Corresponding author: Anatoly M. Belyaev
  • Received Date: 05 Dec 2016
  • Accepted Date: 20 Sep 2017
  • Publish Date: 01 Dec 2018
  • Geological surveys showed that rhyolite and basalt strata with pillow structures typical for underwater volcanism form sheets over the Svecofennian basement. Original geochemical and isotope-geochemical data confirmed that the rhyolites were formed contemporaneously with the ra-pakivi granites of the Wiborg Massif (1 640 Ma), and the basalts are similar to gabbro-anorthosites. Abnormally high content of K2O and relatively low content of Na2O in rhyolites and basalts are interpreted as a result of hydrothermal interaction of eruptive magmas with K-enriched hot seawater. The strata of siliceous metasedimentary rocks (microquartzites) within basaltic and rhyolitic lavas were formed in processes of chemogenic sedimentation and subsequent contact metamorphism during underwater volcanism. Microquartzites showed carbon vastly depleted of heavy isotope 13C. This is typical for rocks formed with participation of living substance. The Raman spectra of the remaining carbon-containing substance have graphite bands. In the microquartzites among basalts and rhyolites we found a community of structures with external and internal morphology similar to modern or fossilized marine microorganisms:spiral cyanobacterias, amoebas, diatoms, foraminifers, virus capsids, flagellates and multicellular organisms. It is assumed that these silificated and ferruginizated microfossils represent the Paleoproterozoic community of marine microorganisms.

     

  • loading
  • Belyaev, A. M., 2013. Petrology of Volcanic Rocks from the Rapakivi Formation (Island Hogland). J. Regional Geology and Metallogeny, St. Petersburg, Russia, 55:28-36 (in Russian) https://www.researchgate.net/publication/295647695_Petrology_and_economic_geology_of_the_crowsnest_volcanics_Alberta
    Belyaev, A. M., Bogdanov, Y. B., Levchenkov, O. A., 1998. Petrogenesis of the Bimodal Rapakivi-Related Volcanites of the Island of Hogland, 1.64 Ga Wiborg Batholith, Russia. In: Rapakivi Granites and Related Rocks: Correlation on a Global Scale. Madison, USA. Abstr. Vol. IGCP-315 Symp.. 139-140
    Belyaev, A. M., Bogdanov, Y. B., Levchenkov, O. A., et al., 1996. Bimodal Volcanic Formations of the Wiborg Batholith on the Island of Hogland (Suursaari), Russia. In: Rapakivi Granites and Related Rocks: Correlation on a Global Scale. Helsinki, Finland. Abstr. Vol. IGCP-315 Symp.). 5
    Benning, L. G., Phoenix, V., Yee, M. J., et al., 2002. Molecular Characterization of Cyanobacterial Cells during Silicification:A Synchrotronbased Infrared Study. Geochem. Earth Surf., 6:259-263 https://www.academia.edu/2386612/Molecular_characterization_of_cyanobacterial_cells_during_silicification_a_synchrotron-_based_infrared_study
    Bickford, M. E., Sides, J. R., Cullers, R. L., 1981. Chemical Evolution of Magmas in the Proterozoic Terrane of the St. Francois Mountains, Southeastern Missouri:1. Field, Petrographic, and Major Element Data. Journal of Geophysical Research:Solid Earth, 86(B11):10365-10386. https://doi.org/10.1029/jb086ib11p10365
    Biske, N. S., Belyaev, A. M., Kolodey, V. A., 2015. Raman Spectrum of Carbonaceous Material from Hornstones of the Island of Hogland (Russia). Ⅻ General Meeting of the Russian Mineralogical Society, St. Petersburg, Russia. 185-186 (in Russian)
    Filippov, A. N., Kemkin, I. V., 2009. Siliceous-Volcanogenic Complexes of Western Sikhote Alin:Their Stratigraphy and Origin. Russian Journal of Pacific Geology, 3(2):154-168. https://doi.org/10.1134/s1819714009020055
    Frikh-Khar, D. I., 1982. The Interaction of Seawater with Igneous Matter. Soviet Geology, 10:93-99 (in Russian) doi: 10.1130/0091-7613(1982)10<93:TSODAI>2.0.CO;2
    Grosberg, R. K., Strathmann, R. R., 2007. The Evolution of Multicellularity:A Minor Major Transition?. Annual Review of Ecology, Evolution, and Systematics, 38(1):621-654. https://doi.org/10.1146/annurev.ecolsys. 36.102403.114735 doi: 10.1146/annurev.ecolsys.36.102403.114735
    Iyer, L. M., Balaji, S., Koonin, E. V., et al., 2006. Evolutionary Genomics of Nucleo-Cytoplasmic Large DNA Viruses. Virus Research, 117(1):156-184. https://doi.org/10.1016/j.virusres.2006.01.009
    Jehlička, J., Urban, O., Pokorný, J., 2003. Raman Spectroscopy of Carbon and Solid Bitumens in Sedimentary and Metamorphic Rocks. Spectro-chimica Acta Part A:Molecular and Biomolecular Spectroscopy, 59(10):2341-2352. https://doi.org/10.1016/s1386-1425(03)00077-5
    Kisvarsanyi, E. B., 1972. Petrochemistry of Precambrian Igneous Province, St. Francois Mountains, Missouri. Report of Investigations, No. 51. Rolla, Missouri, USA. 97 http://www.worldcat.org/title/petrochemistry-of-a-precambrian-igneous-province-st-francois-mountains-missouri/oclc/539629
    Kooistra, W. H. C. F., Medlin, L. K., 1996. Evolution of the Diatoms (Bacillariophyta) Ⅳ:A Reconstruction of Their Age from Small Subunit rRNA Coding Regions and the Fossil Record. Molecular Phylogenetics and Evolution, 6(3):391-407 doi: 10.1006/mpev.1996.0088
    Lawrence, C. M., Menon, S., Eilers, B. J., et al., 2009. Structural and Functional Studies of Archaeal Viruses. Journal of Biological Chemistry, 284(19):12599-12603. https://doi.org/10.1074/jbc.r800078200
    Orange, F., Chabin, A., Gorlas, A., et al., 2011. Experimental Fossilisation of Viruses from Extremophilic Archaea. Biogeosciences, 8(6):1465-1475. https://doi.org/10.5194/bg-8-1465-2011
    Pawlowski, J., Holzmann, M., Berney, C., et al., 2003. The Evolution of Early Foraminifera. Proceedings of the National Academy of Sciences, 100(20):11494-11498. https://doi.org/10.1073/pnas.2035132100
    Rämö, O. T., 1991. Petrogenesis of the Proterozoic Rapakivi Granites and Related Basic Rocks of Southeastern Fennoscandia:Nd and Pb Isotopic and General Geochemical Constraints. Geol. Surv. Finland, Bull., 155 http://www.worldcat.org/title/petrogenesis-of-the-proterozoic-rapakivi-granites-and-related-basic-rocks-of-southeastern-fennoscandia-nd-and-pb-isotopic-and-general-geochemical-constraints/oclc/24817506
    Rämö, O. T., Mänttäri, I., Huhma, H., et al., 2007. 1 635 Ma Bimodal Volcanism Associated with the Wiborg Rapakivi Batholith (Suursaari, Gulf of Finland, Russia). Sixth Hutton Symposium on the Origin of Granitic Rocks. University of Stellenbosch, July 2007, Stellenbosch. 174-175
    Renaut, R. W., Jones, B., Tiercelin, J. J., 1998. Rapid in situ Silicification of Microbes at Loburu Hot Springs, Lake Bogoria, Kenya Rift Valley. Sedimentology, 45(6):1083-1103. https://doi.org/10.1046/j.1365-3091.1998.00194.x
    Rozanov, A. Y., 2002. Bacterial Paleontology. PIN RAN, Moscow. 88 (in Russian) http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ026918423/
    Rozanov, A. Y., Astafieva, M. M., 2009. The Evolution of the Early Precambrian Geobiological Systems. Paleontological Journal, 43(8):911-927. https://doi.org/10.1134/s0031030109080103
    Sides, J. R., Bickford, M. E., Shuster, R. D., et al., 1981. Calderas in the Precambrian Terrane of the St. Francois Mountains, Southeastern Mis-souri. Journal of Geophysical Research:Solid Earth, 86(B11):10349-10364. https://doi.org/10.1029/jb086ib11p10349
    Streng, M., Babcock, L. E., Hollingsworth, J. S., 2005. Agglutinated Protists from the Lower Cambrian of Nevada. Journal of Paleontology, 79(6):1214-1218. https://doi.org/10.1666/0022-3360(2005)079[1214:apftlc]2.0.co;2
    Westall, F., Boni, L., Guerzoni, E., 1995. The Experimental Silicification of Microorganisms. Palaeontology, 38(3):495-528 doi: 10.1016-0301-9268(78)90048-7/
    Yu, J., Fu, H., Zhang, F., et al., 1994. Petrogenesis of Potassic Alkaline Volcanics Associated with Rapakivi Granites in the Proterozoic Rift of Beijing, China. Mineralogy and Petrology, 50(1/2/3):83-96. https://doi.org/10.1007/bf01160141
    Zhang, S. H., Liu, S. W., Zhao, Y., et al., 2007. The 1.75-1.68 Ga Anorthosite-Mangerite-Alkali Granitoid-Rapakivi Granite Suite from the Northern North China Craton:Magmatism Related to a Paleoproterozoic Orogen. Precambrian Research, 155(3/4):287-312. https://doi.org/10.1016/j.precamres. 2007.02.008 doi: 10.1016/j.precamres.2007.02.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views(541) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return