Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 2
Apr 2019
Turn off MathJax
Article Contents
Haijun Song, Paul B. Wignall, Huyue Song, Xu Dai, Daoliang Chu. Seawater Temperature and Dissolved Oxygen over the Past 500 Million Years. Journal of Earth Science, 2019, 30(2): 236-243. doi: 10.1007/s12583-018-1002-2
Citation: Haijun Song, Paul B. Wignall, Huyue Song, Xu Dai, Daoliang Chu. Seawater Temperature and Dissolved Oxygen over the Past 500 Million Years. Journal of Earth Science, 2019, 30(2): 236-243. doi: 10.1007/s12583-018-1002-2

Seawater Temperature and Dissolved Oxygen over the Past 500 Million Years

doi: 10.1007/s12583-018-1002-2
Funds:

the State Key R & D Project of China 2016YFA0601100

the Biosphere Evolution, Transitions and Resilience Program (BETR) 

the National Natural Science Foundation of China 41821001

the National Natural Science Foundation of China 41661134047

the National Natural Science Foundation of China 41622207

the National Natural Science Foundation of China 41530104

the Natural Environment Research Council's Eco-PT Project NE/P01377224/1

a Marie Curie Fellowship H2020-MSCA-IF-2015-701652

the Strategic Priority Research Program of Chinese Academy of Sciences XDB26000000

More Information
  • Corresponding author: Haijun Song
  • Received Date: 27 Mar 2018
  • Accepted Date: 30 Sep 2018
  • Publish Date: 01 Apr 2019
  • Ocean temperature and dissolved oxygen concentrations are critical factors that control ocean productivity, carbon and nutrient cycles, and marine habitat. However, the evolution of these two factors in the geologic past are still unclear. Here, we use a new oxygen isotope database to establish the sea surface temperature (SST) curve in the past 500 million years. The database is composed of 22 796 oxygen isotope values of phosphatic and calcareous fossils. The result shows two prolonged cooling events happened in the Late Paleozoic and Late Cenozoic, coinciding with two major ice ages indicated by continental glaciation data, and seven global warming events that happened in the Late Cambrian, Silurian- Devonian transition, Late Devonian, Early Triassic, Toarcian, Late Cretaceous, and Paleocene-Eocene transition. The SSTs during these warming periods are about 5-30¦ higher than the present-day level. Oxygen contents of shallow seawater are calculated from temperature, salinity, and atmospheric oxygen. The results show that major dissolved oxygen valleys of surface seawater coincide with global warming events and ocean anoxic events. We propose that the combined effect of temperature and dissolved oxygen account for the long-term evolution of global oceanic redox state during the Phanerozoic.

     

  • loading
  • Belcher, C. M., McElwain, J. C., 2008. Limits for Combustion in Low O2 Redefine Paleoatmospheric Predictions for the Mesozoic. Science, 321(5893):1197-1200. https://doi.org/10.1126/science.1160978
    Benson, B. B., Krause, D. Jr., 1984. The Concentration and Isotopic Frac-tionation of Oxygen Dissolved in Freshwater and Seawater in Equilib-rium with the Atmosphere1. Limnology and Oceanography, 29(3):620-632. https://doi.org/10.4319/lo.1984.29.3.0620
    Bergman, N. M., 2004. COPSE:A New Model of Biogeochemical Cycling over Phanerozoic Time. American Journal of Science, 304(5):397-437. https://doi.org/10.2475/ajs.304.5.397
    Berner, R. A., 2001. GEOCARB Ⅲ:A Revised Model of Atmospheric CO2 over Phanerozoic Time. American Journal of Science, 301(2):182-204. https://doi.org/10.2475/ajs.301.2.182
    Berner, R. A., 2006. GEOCARBSULF:A Combined Model for Phanerozoic Atmospheric O2 and CO2. Geochimica et Cosmochimica Acta, 70(23):5653-5664. https://doi.org/10.1016/j.gca.2005.11.032
    Brown, P. T., Caldeira, K., 2017. Greater Future Global Warming Inferred from Earth's Recent Energy Budget. Nature, 552(7683):45-50. https://doi.org/10.1038/nature24672
    Came, R. E., Eiler, J. M., Veizer, J., et al., 2007. Coupling of Surface Temperatures and Atmospheric CO2 Concentrations during the Palaeozoic Era. Nature, 449(7159):198-201. https://doi.org/10.1038/nature06085
    Crowley, J. K., Berner, R. A., 2001. CO2 and Climate Change. Science, 292:870-872. https://doi.org/10.1126/science.1061664
    Dera, G., Brigaud, B., Monna, F., et al., 2011. Climatic Ups and Downs in a Disturbed Jurassic World. Geology, 39(3):215-218. https://doi.org/10.1130/g31579.1
    Dickson, A. J., Cohen, A. S., Coe, A. L., 2012. Seawater Oxygenation during the Paleocene-Eocene Thermal Maximum. Geology, 40(7):639-642. https://doi.org/10.1130/g32977.1
    Falkowski, P. G., Katz, M. E., Milligan, A. J., et al., 2005. The Rise of Oxygen over the Past 205 Million Years and the Evolution of Large Placental Mammals. Science, 309(5744):2202-2204. https://doi.org/10.1126/science.1116047
    Fielding, C. R., Frank, T. D., Isbell, J. L., 2008. The Late Paleozoic Ice Age-A Review of Current Understanding and Synthesis of Global Climate Patterns. In: Fielding, C. R., Frank, T. D., Isbell, J. L., eds., Resolving the Late Paleozoic Ice Age in Time and Space, 441: 343-354
    Finnegan, S., Bergmann, K., Eiler, J. M., et al., 2011. The Magnitude and Duration of Late Ordovician-Early Silurian Glaciation. Science, 331(6019):903-906. https://doi.org/10.1126/science.1200803
    Foster, G. L., Royer, D. L., Lunt, D. J., 2017. Future Climate Forcing Potentially without Precedent in the Last 420 Million Years. Nature Communications, 8:14845. https://doi.org/10.1038/ncomms14845
    Glasspool, I. J., Scott, A. C., 2010. Phanerozoic Concentrations of Atmos-pheric Oxygen Reconstructed from Sedimentary Charcoal. Nature Ge-oscience, 3(9):627-630. https://doi.org/10.1038/ngeo923
    Grossman, E. L., Mii, H. S., Zhang, C. L., et al., 1996. Chemical Variation in Pennsylvanian Brachiopod Shells-Diagenetic, Taxonomic, Micro-structural, and Seasonal Effects. SEPM Journal of Sedimentary Research, 66(5):1011-1022. https://doi.org/10.1306/d4268469-2b26-11d7-8648000102c1865d
    Grossman, E. L., 2012. Oxygen Isotope Stratigraphy. In: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., eds., The Geologic Time Scale 2012. Elsevier. 195-220
    Hay, W. W., Migdisov, A., Balukhovsky, A. N., et al., 2006. Evaporites and the Salinity of the Ocean during the Phanerozoic:Implications for Climate, Ocean Circulation and Life. Palaeogeography, Palaeoclimatology, Palaeoecology, 240(1/2):3-46. https://doi.org/10.1016/j.palaeo.2006.03.044
    Hays, P. D., Grossman, E. L., 1991. Oxygen Isotopes in Meteoric Calcite Cements as Indicators of Continental Paleoclimate. Geology, 19(5):441. https://doi.org/10.1130/0091-7613(1991)019<0441:oiimcc>2.3.co;2 doi: 10.1130/0091-7613(1991)019<0441:oiimcc>2.3.co;2
    Henkes, G. A., Passey, B. H., Grossman, E. L., et al., 2018. Temperature Evolution and the Oxygen Isotope Composition of Phanerozoic Oceans from Carbonate Clumped Isotope Thermometry. Earth and Planetary Science Letters, 490:40-50. https://doi.org/10.1016/j.epsl.2018.02.001
    Hughes, T. P., Kerry, J. T., Álvarez-Noriega, M., et al., 2017. Global Warming and Recurrent Mass Bleaching of Corals. Nature, 543(7645):373-377. https://doi.org/10.1038/nature21707
    Jenkyns, H. C., 2010. Geochemistry of Oceanic Anoxic Events. Geochemis-try, Geophysics, Geosystems, 11(3):Q03004. https://doi.org/10.1029/2009gc002788
    Joachimski, M. M., van Geldern, R., Breisig, S., et al., 2004. Oxygen Isotope Evolution of Biogenic Calcite and Apatite during the Middle and Late Devonian. International Journal of Earth Sciences, 93(4):542-553. https://doi.org/10.1007/s00531-004-0405-8
    Joachimski, M. M., Lai, X., Shen, S., et al., 2012. Climate Warming in the Latest Permian and the Permian-Triassic Mass Extinction. Geology, 40(3):195-198. https://doi.org/10.1130/g32707.1
    Kennett, J. P., Stott, L. D., 1991. Abrupt Deep-Sea Warming, Palaeoceano-graphic Changes and Benthic Extinctions at the End of the Palaeocene. Nature, 353(6341):225-229. https://doi.org/10.1038/353225a0
    Krause, A. J., Mills, B. J. W., Zhang, S., et al., 2018. Stepwise Oxygenation of the Paleozoic Atmosphere. Nature Communications, 9(1):4081. https://doi.org/10.1038/s41467-018-06383-y
    Lécuyer, C., Amiot, R., Touzeau, A., et al., 2013. Calibration of the Phos-phate δ18O Thermometer with Carbonate-Water Oxygen Isotope Frac-tionation Equations. Chemical Geology, 347:217-226. https://doi.org/10.13039/501100004794
    McElwain, J. C., Wade-Murphy, J., Hesselbo, S. P., 2005. Changes in Carbon Dioxide during an Oceanic Anoxic Event Linked to Intrusion into Gondwana Coals. Nature, 435(7041):479-482. https://doi.org/10.1038/nature03618
    Meinshausen, M., Meinshausen, N., Hare, W., et al., 2009. Greenhouse-Gas Emission Targets for Limiting Global Warming to 2℃. Nature, 458(7242):1158-1162. https://doi.org/10.1038/nature08017
    Meyer, K. M., Kump, L. R., 2008. Oceanic Euxinia in Earth History:Causes and Consequences. Annual Review of Earth and Planetary Sciences, 36(1):251-288. https://doi.org/10.1146/annurev.earth.36.031207.124256
    O'Brien, C. L., Robinson, S. A., Pancost, R. D., et al., 2017. Cretaceous Sea-Surface Temperature Evolution:Constraints from TEX 86 and Planktonic Foraminiferal Oxygen Isotopes. Earth-Science Reviews, 172:224-247. https://doi.org/10.1016/j.earscirev.2017.07.012
    Penn, J. L., Deutsch, C., Payne, J. L., et al., 2018. Temperature-Dependent Hypoxia Explains Biogeography and Severity of End-Permian Marine Mass Extinction. Science, 362(6419):eaat1327. https://doi.org/10.1126/science.aat1327
    Rey, K., Amiot, R., Fourel, F., et al., 2016. Global Climate Perturbations during the Permo-Triassic Mass Extinctions Recorded by Continental Tetrapods from South Africa. Gondwana Research, 37:384-396. https://doi.org/10.1016/j.gr.2015.09.008
    Royer, D. L., Berner, R. A., Montañez, I. P., et al., 2004. CO2 as a Primary Driver of Phanerozoic Climate. GSA Today, 14(3):3-7. https://doi.org/10.1130/1052-5173(2004)014<4:caapdo>2.0.co;2 doi: 10.1130/1052-5173(2004)014<4:caapdo>2.0.co;2
    Royer, D. L., Donnadieu, Y., Park, J., et al., 2014. Error Analysis of CO2 and O2 Estimates from the Long-Term Geochemical Model GEOCARB-SULF. American Journal of Science, 314(9):1259-1283. https://doi.org/10.2475/09.2014.01
    Sarmiento, J. L., Herbert, T. D., Toggweiler, J. R., 1988. Causes of Anoxia in the World Ocean. Global Biogeochemical Cycles, 2(2):115-128. https://doi.org/10.1029/gb002i002p00115
    Shaviv, N. J., Veizer, J., 2003. Celestial Driver of Phanerozoic Climate?. GSA Today, 13(7):4-10. https://doi.org/10.1130/1052-5173(2003)013<0004:cdopc>2.0.co;2 doi: 10.1130/1052-5173(2003)013<0004:cdopc>2.0.co;2
    Sinninghe Damsté, J. S., van Bentum, E. C., Reichart, G. J., et al., 2010. A CO2 Decrease-Driven Cooling and Increased Latitudinal Temperature Gradient during the Mid-Cretaceous Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 293(1/2):97-103. https://doi.org/10.1016/j.epsl.2010.02.027
    Sluijs, A., Schouten, S., Pagani, M., et al., 2006. Subtropical Arctic Ocean Temperatures during the Palaeocene/Eocene Thermal Maximum. Nature, 441(7093):610-613. https://doi.org/10.1038/nature04668
    Song, H. J., Wignall, P. B., Chu, D. L., et al., 2014. Anoxia/High Temperature Double Whammy during the Permian-Triassic Marine Crisis and Its Aftermath. Scientific Reports, 4(1):4132. https://doi.org/10.1038/srep04132
    Song, H. J., Jiang, G. Q., Poulton, S. W., et al., 2017. The Onset of Wide-spread Marine Red Beds and the Evolution of Ferruginous Oceans. Na-ture Communications, 8(1):399. https://doi.org/10.1038/s41467-017-00502-x
    Stramma, L., Johnson, G. C., Sprintall, J., et al., 2008. Expanding Oxy-gen-Minimum Zones in the Tropical Oceans. Science, 320(5876):655-658. https://doi.org/10.1126/science.1153847
    Sun, Y., Joachimski, M. M., Wignall, P. B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338(6105):366-370. https://doi.org/10.1126/science.1224126
    Tripati, A., Elderfield, H., 2005. Deep-Sea Temperature and Circulation Changes at the Paleocene-Eocene Thermal Maximum. Science, 308(5730):1894-1898. https://doi.org/10.1126/science.1109202
    Trotter, J. A., Williams, I. S., Barnes, C. R., et al., 2008. Did Cooling Oceans Trigger Ordovician Biodiversification? Evidence from Conodont Thermometry. Science, 321(5888):550-554. https://doi.org/10.1126/science.1155814
    Veizer, J., Godderis, Y., François, L. M., 2000. Evidence for Decoupling of Atmospheric CO2 and Global Climate during the Phanerozoic Eon. Nature, 408(6813):698-701. https://doi.org/10.1038/35047044
    Veizer, J., Prokoph, A., 2015. Temperatures and Oxygen Isotopic Composi-tion of Phanerozoic Oceans. Earth-Science Reviews, 146:92-104. https://doi.org/10.1016/j.earscirev.2015.03.008
    Zachos, J. C., Wara, M. W., Bohaty, S., et al., 2003. A Transient Rise in Tropical Sea Surface Temperature during the Paleocene-Eocene Thermal Maximum. Science, 302(5650):1551-1554. https://doi.org/10.1126/science.1090110
    Zachos, J. C., Schouten, S., Bohaty, S., et al., 2006. Extreme Warming of Mid-Latitude Coastal Ocean during the Paleocene-Eocene Thermal Maximum:Inferences from TEX86 and Isotope Data. Geology, 34(9):737-740. https://doi.org/10.1130/g22522.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(1592) PDF downloads(134) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return