Chalmers, G.R., Bustin, R.M., Power, I.M., 2012. Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses:Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units. AAPG Bulletin, 96(6):1099-1119. https://doi.org/10.1306/10171111052 |
Chen, J., Xiao, X. M., 2014. Evolution of Nanoporosity in Organic-Rich Shales during Thermal Maturation. Fuel, 129:173-181. https://doi.org/10.1016/j.fuel.2014.03.058 |
Clarkson, C. R., Solano, N., Bustin, R. M., et al., 2013. Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS, Gas Adsorption, and Mercury Intrusion. Fuel, 103:606-616. https://doi.org/10.1016/j.fuel.2012.06.119 |
Colosimo, F., Thomas, R., Lloyd, J. R., et al., 2016. Biogenic Methane in Shale Gas and Coal Bed Methane:A Review of Current Knowledge and Gaps. International Journal of Coal Geology, 165:106-120. https://doi.org/10.1016/j.coal.2016.08.011 |
Currie, B. J., 2016. Stratigraphy of the Upper Devonian-Lower Mississippian Michigan Basin: Review and Revision with an Emphasis on the Ellsworth Petroleum System: [Dissertation]. Geological and Environmental Sciences, Western Michigan University, Kalamazoo |
Curtis, J. B., 2002. Fractured Shale-Gas Systems. AAPG Bulletin, 86(11):1921-1938 http://www.nrcresearchpress.com/servlet/linkout?suffix=refg13/ref13&dbid=16&doi=10.1139%2Fcjes-2014-0188&key=10.1306%2F61EEDDBE-173E-11D7-8645000102C1865D |
Do, D. D., Do, H. D., 2003. Pore Characterization of Carbonaceous Materials by DFT and GCMC Simulations:A Review. Adsorption Science & Technology, 21(5):389-423. https://doi.org/10.1260/026361703769645753 |
Garrido, J., Linares-Solano, A., Martin-Martinez, J. M., et al., 1987. Use of Nitrogen vs. Carbon Dioxide in the Characterization of Activated Carbons. Langmuir, 3(1):76-81. https://doi.org/10.1021/la00073a013 |
Groen, J. C., Peffer, L. A. A., Pérez-Ramı́rez, J., 2003. Pore Size Determination in Modified Micro-and Mesoporous Materials. Pitfalls and Limitations in Gas Adsorption Data Analysis. Microporous and Mesoporous Materials, 60(1/2/3):1-17. https://doi.org/10.1016/s1387-1811(03)00339-1 |
Hill, R. J., Tang, Y. C., Kaplan, I. R., 2003. Insights into Oil Cracking Based on Laboratory Experiments. Organic Geochemistry, 34(12):1651-1672. https://doi.org/10.1016/s0146-6380(03)00173-6 |
Hopkins, C. W., Frantz, J. H. Jr, Hill, D. G., et al., 1995. Estimating Fracture Geometry in the Naturally Fractured Antrim Shale. In: SPE Annual Technical Conference and Exhibition. SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, Oct. 22-25, Dallas, Texas |
Jarvie, D. M., Claxton, B. L., Henk, F., et al., 2001. Oil and Shale Gas from the Barnett Shale, Ft. Worth Basin, Texas. Talk Presented at the AAPG National Convention, Jun. 3-6, 2001, Denver, CO |
Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems:The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4):475-499. https://doi.org/10.1306/12190606068 |
Ji, L. M., Su, L., Wu, Y. D., et al., 2017. Pore Evolution in Hydrocarbon-Generation Simulation of Organic Matter-Rich Muddy Shale. Petroleum Research, 2(2):146-155. https://doi.org/10.1016/j.ptlrs.2017.07.002 |
Jia, B., Tsau, J. S., Barati, R., 2019. A Review of the Current Progress of CO2 Injection EOR and Carbon Storage in Shale Oil Reservoirs. Fuel, 236:404-427. https://doi.org/10.1016/j.fuel.2018.08.103 |
Ko, L. T., Ruppel, S. C., Loucks, R. G., et al., 2018. Pore-Types and Pore-Network Evolution in Upper Devonian-Lower Mississippian Woodford and Mississippian Barnett Mudstones:Insights from Laboratory Thermal Maturation and Organic Petrology. International Journal of Coal Geology, 190:3-28. https://doi.org/10.1016/j.coal.2017.10.001 |
Krüger, M., van Berk, W., Arning, E. T., et al., 2014. The Biogenic Methane Potential of European Gas Shale Analogues:Results from Incubation Experiments and Thermodynamic Modelling. International Journal of Coal Geology, 136:59-74. https://doi.org/10.1016/j.coal.2014.09.012 |
Li, J. Q., Zhang, P. F., Lu, S. F., et al., 2019. Scale-Dependent Nature of Porosity and Pore Size Distribution in Lacustrine Shales:An Investigation by BIB-SEM and X-Ray CT Methods. Journal of Earth Science, 30(4):823-833. https://doi.org/10.1007/s12583-018-0835-z |
Liu, B., Song, Y., Zhu, K., et al., 2020. Mineralogy and Element Geochemistry of Salinized Lacustrine Organic-Rich Shale in the Middle Permian Santanghu Basin:Implications for Paleoenvironment, Provenance, Tectonic Setting and Shale Oil Potential. Marine and Petroleum Geology, 120:104569. https://doi.org/10.1016/j.marpetgeo.2020.104569 |
Liu, K. Q., Ostadhassan, M., Gentzis, T., et al., 2018. Characterization of Geochemical Properties and Microstructures of the Bakken Shale in North Dakota. International Journal of Coal Geology, 190:84-98. https://doi.org/10.1016/j.coal.2017.08.006 |
Liu, K. Q., Ostadhassan, M., Zhou, J., et al., 2017. Nanoscale Pore Structure Characterization of the Bakken Shale in the USA. Fuel, 209:567-578. https://doi.org/10.1016/j.fuel.2017.08.034 |
Liu, K. Q., Wang, L., Ostadhassan, M., et al., 2019. Nanopore Structure Comparison between Shale Oil and Shale Gas:Examples from the Bakken and Longmaxi Formations. Petroleum Science, 16(1):77-93. https://doi.org/10.1007/s12182-018-0277-3 |
Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6):1071-1098. https://doi.org/10.1306/08171111061 |
Ma, Y. Z., Holditch, S., 2015. Unconventional Oil and Gas Resources Handbook: Evaluation and Development. Gulf Professional Publishing |
Manger, K. C., Oliver, S. J. P., Curtis, J. B., et al., 1991. Geologic Influences on the Location and Production of Antrim Shale Gas, Michigan Basin. Low Permeability Reservoirs Symposium, Society of Petroleum Engineers, Apr. 15-17, Denver, Colorado. SPE 21854 |
Martini, A. M., Walter, L. M., Ku, T. C. W., et al., 2003. Microbial Production and Modification of Gases in Sedimentary Basins:A Geochemical Case Study from a Devonian Shale Gas Play, Michigan Basin. AAPG Bulletin, 87(8):1355-1375. https://doi.org/10.1306/031903200184 |
Pfeifer, P., Wu, Y. J., Cole, M. W., et al., 1989. Multilayer Adsorption on a Fractally Rough Surface. Physical Review Letters, 62(17):1997-2000. https://doi.org/10.1103/physrevlett.62.1997 |
Rebata-Landa, V., Santamarina, J. C., 2006. Mechanical Limits to Microbial Activity in Deep Sediments. Geochemistry, Geophysics, Geosystems, 7(11). https://doi.org/10.1029/2006gc001355 |
Reeves, S. R., Cox, D. O., Smith, M. B., et al., 1993. Stimulation Technology in the Antrim Shale. In: SPE Gas Technology Symposium. SPE Gas Technology Symposium, Society of Petroleum Engineers, Jun. 28-30, Calgary, Alberta |
Rice, D. D., 1993. Biogenic Gas: Controls, Habitats, and Resource Potential. United States Geological Survey, Professional Paper. 1570 |
Rouquerol, J., Avnir, D., Fairbridge, C. W., et al., 1994. Recommendations for the Characterization of Porous Solids (Technical Report). Pure and Applied Chemistry, 66(8):1739-1758. https://doi.org/10.1351/pac199466081739 |
Sahouli, B., Blacher, S., Brouers, F., 1997. Applicability of the Fractal FHH Equation. Langmuir, 13(16):4391-4394. https://doi.org/10.1021/la962119k |
Schulz, H. M., Biermann, S., van Berk, W., et al., 2015. From Shale Oil to Biogenic Shale Gas:Retracing Organic-Inorganic Interactions in the Alum Shale (Furongian-Lower Ordovician) in Southern Sweden. AAPG Bulletin, 99(5):927-956. https://doi.org/10.1306/10221414014 |
Strąpoć, D., Mastalerz, M., Dawson, K., et al., 2011. Biogeochemistry of Microbial Coal-Bed Methane. Annual Review of Earth and Planetary Sciences, 39(1):617-656. https://doi.org/10.1146/annurev-earth-040610-133343 |
Stolper, D. A., Martini, A. M., Clog, M., et al., 2015. Distinguishing and Understanding Thermogenic and Biogenic Sources of Methane Using Multiply Substituted Isotopologues. Geochimica et Cosmochimica Acta, 161:219-247. https://doi.org/10.1016/j.gca.2015.04.015 |
Wang, Y., Liu, L. F., Zheng, S. S., et al., 2019. Full-Scale Pore Structure and Its Controlling Factors of the Wufeng-Longmaxi Shale, Southern Sichuan Basin, China:Implications for Pore Evolution of Highly Overmature Marine Shale. Journal of Natural Gas Science and Engineering, 67:134-146. https://doi.org/10.1016/j.jngse.2019.04.020 |
Wuchter, C., Banning, E., Mincer, T. J., et al., 2013. Microbial Diversity and Methanogenic Activity of Antrim Shale Formation Waters from Recently Fractured Wells. Frontiers in Microbiology, 4:367. https://doi.org/10.3389/fmicb.2013.00367 |
Yang, R., He, S., Yi, J. Z., et al., 2016. Nano-Scale Pore Structure and Fractal Dimension of Organic-Rich Wufeng-Longmaxi Shale from Jiaoshiba Area, Sichuan Basin:Investigations Using FE-SEM, Gas Adsorption and Helium Pycnometry. Marine and Petroleum Geology, 70:27-45. https://doi.org/10.1016/j.marpetgeo.2015.11.019 |
Zhang, Q., Liu, R. H., Pang, Z. L., et al., 2016. Characterization of Microscopic Pore Structures in Lower Silurian Black Shale(S1l), Southeastern Chongqing, China. Marine and Petroleum Geology, 71:250-259. https://doi.org/10.1016/j.marpetgeo.2015.12.015 |
Zhou, W. D., Xie, S. Y., Bao, Z. Y., et al., 2019. Chemical Compositions and Distribution Characteristics of Cements in Longmaxi Formation Shales, Southwest China. Journal of Earth Science, 30(5):879-892. https://doi.org/10.1007/s12583-019-1013-7 |
Zoback, M. D., Kohli, A. H., 2019. Unconventional Reservoir Geomechanics. Cambridge University Press, Cambridge |
Zuo, J. X., Peng, S. C., Qi, Y. P., et al., 2018. Carbon-Isotope Excursions Recorded in the Cambrian System, South China:Implications for Mass Extinctions and Sea-Level Fluctuations. Journal of Earth Science, 29(3):479-491. https://doi.org/10.1007/s12583-017-0963-x |