Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 4
Aug 2024
Turn off MathJax
Article Contents
Jiyong Li, Yanqing Xia, Xilong Zhang, Haoyuan Jiang, Tianzhu Lei, Yongchao Wang, Yanhong Liu, Shanpin Liu, Xiaobao Zhang. Paleozoic Multi-Stage Magmatic Events Related to Proto-Tethys and Paleo-Tethys Evolution: Insights from Intrusive Rocks in the Eastern Altyn Orogen, NW China. Journal of Earth Science, 2024, 35(4): 1130-1148. doi: 10.1007/s12583-021-1603-z
Citation: Jiyong Li, Yanqing Xia, Xilong Zhang, Haoyuan Jiang, Tianzhu Lei, Yongchao Wang, Yanhong Liu, Shanpin Liu, Xiaobao Zhang. Paleozoic Multi-Stage Magmatic Events Related to Proto-Tethys and Paleo-Tethys Evolution: Insights from Intrusive Rocks in the Eastern Altyn Orogen, NW China. Journal of Earth Science, 2024, 35(4): 1130-1148. doi: 10.1007/s12583-021-1603-z

Paleozoic Multi-Stage Magmatic Events Related to Proto-Tethys and Paleo-Tethys Evolution: Insights from Intrusive Rocks in the Eastern Altyn Orogen, NW China

doi: 10.1007/s12583-021-1603-z
More Information
  • Corresponding author: Jiyong Li, lijiy09@163.com; Yanqing Xia, yqxia@lzb.ac.cn
  • Received Date: 12 Sep 2021
  • Accepted Date: 15 Dec 2021
  • Available Online: 16 Aug 2024
  • Issue Publish Date: 30 Aug 2024
  • Abundant mafic-felsic intrusions distributed in the Altyn Orogen record orogenic histories related to Proto-Tethys and Paleo-Tethys evolution. Zircon U-Pb dating of the intrusive rocks in the eastern Altyn Orogen identifies at least three major tectono-magmatic episodes, yielding ages of ~426, ~376–373 and ~269–254 Ma. The first two emplacement episodes correspond to the post-collisional magmatism in the Altyn Orogen. The ~426 Ma granitoids possess adakitic characteristics coupled with enriched isotopes, suggesting that they originated from partial melting of thickened lower continental crust induced by upwelling asthenospheric mantle after slab break-off of the South Altyn Ocean Plate. Next, the ~376–373 Ma mafic-intermediate rocks and coeval granitoids represent a large thermal event that involved mantle melting with induced new juvenile lower continental crust melting in a post-collisional extensional setting. Finally, the ~254 Ma diabase dykes intruded into the ~269 Ma granitoids, which were related to the widespread Late Paleozoic magmatism resulting from Paleo-Tethys Ocean subduction. Post-collisional magmatism in the Altyn Orogen significantly enhances understanding of the tectono-magmatic evolution in the northern Tibetan Plateau. The penetrative influence of Paleo-Tethys Ocean subduction was more extensive than previously thought.

     

  • Electronic Supplementary Materials: Supplementary materials (Figures S1-S4, Tables S1-S4) are available in the online version of this article at https://doi.org/10.1007/s12583-021-1603-z.
    Conflict of Interest The authors declare that they have no conflict of interest.
  • loading
  • Bao, W. H., Long, X. P., Yuan, C., et al., 2017. Paleozoic Adakitic Rocks in the Northern Altyn Tagh, Northwest China: Evidence for Progressive Crustal Thickening beneath the Dunhuang Block. Lithos, 272/273: 1–15. https://doi.org/10.1016/j.lithos.2016.12.006
    Cao, Y. T., Liu, L., Wang, C., et al., 2019a. Timing and Nature of the Partial Melting Processes during the Exhumation of the Garnet-Bearing Biotite Gneiss in the Southern Altyn Tagh HP/UHP Belt, Western China. Journal of Asian Earth Sciences, 170: 274–293. https://doi.org/10.1016/j.jseaes.2018.11.005
    Cao, Y. T., Liu, L., Wang, C., et al., 2019b. Multi-Stage Metamorphism of the UHP Pelitic Gneiss from the Southern Altyn Tagh HP/UHP Belt, Western China: Petrological and Geochronological Evidence. Journal of Earth Science, 30(3): 603–620. https://doi.org/10.1007/s12583-019-0896-7
    Castillo, P. R., 2006. An Overview of Adakite Petrogenesis. Chinese Science Bulletin, 51(3): 257–268. https://doi.org/10.1007/s11434-006-0257-7
    Castillo, P. R., 2012. Adakite Petrogenesis. Lithos, 134/135: 304–316. https://doi.org/10.1016/j.lithos.2011.09.013
    Chen, B., Jahn, B. M., Suzuki, K., 2013. Petrological and Nd-Sr-Os Isotopic Constraints on the Origin of High-Mg Adakitic Rocks from the North China Craton: Tectonic Implications. Geology, 41(1): 91–94. https://doi.org/10.1130/G33472.1
    Chen, S., Niu, Y. L., Li, J. Y., et al., 2016. Syn-Collisional Adakitic Granodiorites Formed by Fractional Crystallization: Insights from Their Enclosed Mafic Magmatic Enclaves (MMEs) in the Qumushan Pluton, North Qilian Orogen at the Northern Margin of the Tibetan Plateau. Lithos, 248/249/250/251: 455–468. https://doi.org/10.1016/j.lithos.2016.01.033
    Chen, S., Wang, X. H., Niu, Y. L., et al., 2017. Simple and Cost-Effective Methods for Precise Analysis of Trace Element Abundances in Geological Materials with ICP-MS. Science Bulletin, 62(4): 277–289. https://doi.org/10.1016/j.scib.2017.01.004 [PubMed] doi: 10.1016/j.scib.2017.01.004[PubMed
    Cheng, F., Jolivet, M., Fu, S. T., et al., 2016. Large-Scale Displacement along the Altyn Tagh Fault (North Tibet) since Its Eocene Initiation: Insight from Detrital Zircon U-Pb Geochronology and Subsurface Data. Tectonophysics, 677/678: 261–279. https://doi.org/10.1016/j.tecto.2016.04.023
    Cheng, F., Jolivet, M., Hallot, E., et al., 2017. Tectono-Magmatic Rejuvenation of the Qaidam Craton, Northern Tibet. Gondwana Research, 49: 248–263. https://doi.org/10.1016/j.gr.2017.06.004
    Chung, S. L., Liu, D. Y., Ji, J. Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 31(11): 1021–1024. https://doi.org/10.1130/g19796.1
    Darby, B. J., Ritts, B. D., Yue, Y. J., et al., 2005. Did the Altyn Tagh Fault Extend beyond the Tibetan Plateau? Earth and Planetary Science Letters, 240(2): 425–435. https://doi.org/10.1016/j.epsl.2005.09.011
    Davies, J. H., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1/2/3/4): 85–102. https://doi.org/10.1016/0012-821x(94)00237-s
    Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662–665. https://doi.org/10.1038/347662a0
    Dong, J. L., Song, S. G., Su, L., et al., 2020. Early Devonian Mafic Igneous Rocks in the East Kunlun Orogen, NW China: Implications for the Transition from the Proto- to Paleo-Tethys Oceans. Lithos, 376/377: 105771. https://doi.org/10.1016/j.lithos.2020.105771
    Dong, Y. P., Santosh, M., 2016. Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1–40. https://doi.org/10.1016/j.gr.2015.06.009
    Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213–237. https://doi.org/10.1016/j.jseaes.2011.03.002
    Fu, C. L., Yan, Z., Aitchison, J. C., et al., 2020. Multiple Subduction Processes of the Proto-Tethyan Ocean: Implication from Cambrian Intrusions along the North Qilian Suture Zone. Gondwana Research, 87: 207–223. https://doi.org/10.1016/j.gr.2020.06.007
    Fu, D., Huang, B., Johnson, T. E., et al., 2022. Boninitic Blueschists Record Subduction Initiation and Subsequent Accretion of an Arc–Forearc in the Northeast Proto-Tethys Ocean. Geology, 50(1): 10–15. https://doi.org/10.1130/g49457.1
    Gai, Y. S., Liu, L., Wang, C., et al., 2017. Discovery of Coesite in Eclogite from Keqike Jianggalesayi: New Evidence for Ultrahigh-Pressure Metamorphism in South Altyn Tagh, Northwestern China. Science Bulletin, 62(15): 1048–1051. https://doi.org/10.1016/j.scib.2017.07.008 [PubMed] doi: 10.1016/j.scib.2017.07.008[PubMed
    Gao, J., Klemd, R., Long, L. L., et al., 2009. Adakitic Signature Formed by Fractional Crystallization: An Interpretation for the Neo-Proterozoic Meta-Plagiogranites of the NE Jiangxi Ophiolitic Mélange Belt, South China. Lithos, 110(1/2/3/4): 277–293. https://doi.org/10.1016/j.lithos.2009.01.009
    Gao, X. F., Xiao, P. X., Guo, L., et al., 2011. Opening of an Early Paleozoic Limited Oceanic Basin in the Northern Altyn Area: Constraints from Plagiogranites in the Hongliugou-Lapeiquan Ophiolitic Mélange. Science China Earth Sciences, 54(12): 1871–1879. https://doi.org/10.1007/s11430-011-4332-9
    Gehrels, G. E., Yin, A., Wang, X. F., 2003a. Detrital-Zircon Geochronology of the Northeastern Tibetan Plateau. Geological Society of America Bulletin, 115(7): 881–896. https://doi.org/10.1130/0016-7606(2003)115<0881:dgotnt>2.0.co;2 doi: 10.1130/0016-7606(2003)115<0881:dgotnt>2.0.co;2
    Gehrels, G. E., Yin, A., Wang, X. F., 2003b. Magmatic History of the Northeastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 108(B9): 2423. https://doi.org/10.1029/2002jb001876
    Guo, F., Nakamuru, E., Fan, W. M., et al., 2007. Generation of Palaeocene Adakitic Andesites by Magma Mixing; Yanji Area, NE China. Journal of Petrology, 48(4): 661–692. https://doi.org/10.1093/petrology/egl077
    Hsü, K. J., Yao, Y. Y., Li, J. L., et al., 1992. Geology of the Beishan Mountains and the Tectonic Evolution of Northwest China. Eclogae Geologicae Helvetiae, 85: 213–225
    Huang, F., Li, S. G., Dong, F., et al., 2008. High-Mg Adakitic Rocks in the Dabie Orogen, Central China: Implications for Foundering Mechanism of Lower Continental Crust. Chemical Geology, 255(1/2): 1–13. https://doi.org/10.1016/j.chemgeo.2008.02.014
    Janoušek, V., Konopásek, J., Ulrich, S., et al., 2010. Geochemical Character and Petrogenesis of Pan-African Amspoort Suite of the Boundary Igneous Complex in the Kaoko Belt (NW Namibia). Gondwana Research, 18(4): 688–707. https://doi.org/10.1016/j.gr.2010.02.014
    Kang, L., Xiao, P. X., Gao, X. F., et al., 2015. Age, Petrogenesis and Tectonic Implications of Early Devonian Bimodal Volcanic Rocks in the South Altyn, NW China. Journal of Asian Earth Sciences, 111: 733–750. https://doi.org/10.1016/j.jseaes.2015.06.004
    Li, J. H., Zhao, G. C., Johnston, S. T., et al., 2020. Contributions of Triassic Tectonism to Build the Northern Tibetan Plateau: Insights from Tectonic Evolution of the Jinhongshan Range, Central Altyn Tagh Fault System. Tectonics, 39(12): e2020TC006129. https://doi.org/10.1029/2020tc006438
    Li, S. Z., Zhao, S. J., Liu, X., et al., 2018. Closure of the Proto-Tethys Ocean and Early Paleozoic Amalgamation of Microcontinental Blocks in East Asia. Earth-Science Reviews, 186: 37–75. https://doi.org/10.1016/j.earscirev.2017.01.011
    Li, W., Neubauer, F., Liu, Y. J., et al., 2013. Paleozoic Evolution of the Qimantagh Magmatic Arcs, Eastern Kunlun Mountains: Constraints from Zircon Dating of Granitoids and Modern River Sands. Journal of Asian Earth Sciences, 77: 183–202. https://doi.org/10.1016/j.jseaes.2013.08.030
    Li, Y. S., Santosh, M., Zhang, J. X., et al., 2021. Tracking a Continental Deep Subduction and Exhumation from Granulitized Kyanite Eclogites in the South Altyn Tagh, Northern Qinghai-Tibet Plateau, China. Lithos, 382/383: 105954. https://doi.org/10.1016/j.lithos.2020.105954
    Li, Y. S., Zhang, J. X., Yu, S. Y., et al., 2015. Origin of Early Paleozoic Garnet Peridotite and Associated Garnet Pyroxenite in the South Altyn Tagh, NW China: Constraints from Geochemistry, SHRIMP U-Pb Zircon Dating and Hf Isotopes. Journal of Asian Earth Sciences, 100: 60–77. https://doi.org/10.1016/j.jseaes.2015.01.004
    Liu, C. H., Wu, C. L., Gao, Y. H., et al., 2016. Age, Composition, and Tectonic Significance of Palaeozoic Granites in the Altyn Orogenic Belt, China. International Geology Review, 58(2): 131–154. https://doi.org/10.1080/00206814.2015.1056757
    Liu, L., Che, Z. C., Wang, Y., et al., 1998. The Evidence of Sm-Nd Isochron Age for the Early Paleozoic Ophiolite in Mangya Area, Altun Mountains. Chinese Science Bulletin, 43: 754–756. https://doi.org/10.1007/bf02898953
    Liu, L., Kang, L., Cao, Y. T., et al., 2015. Early Paleozoic Granitic Magmatism Related to the Processes from Subduction to Collision in South Altyn, NW China. Science China Earth Sciences, 58(9): 1513–1522. https://doi.org/10.1007/s11430-015-5151-1
    Liu, L., Wang, C., Cao, Y. T., et al., 2012. Geochronology of Multi-Stage Metamorphic Events: Constraints on Episodic Zircon Growth from the UHP Eclogite in the South Altyn, NW China. Lithos, 136/137/138/139: 10–26. https://doi.org/10.1016/j.lithos.2011.09.014
    Liu, L., Wang, C., Chen, D. L., et al., 2009. Petrology and Geochronology of HP-UHP Rocks from the South Altyn Tagh, Northwestern China. Journal of Asian Earth Sciences, 35(3/4): 232–244. https://doi.org/10.1016/j.jseaes.2008.10.007
    Liu, L., Zhang, J. F., Cao, Y. T., et al., 2018. Evidence of Former Stishovite in UHP Eclogite from the South Altyn Tagh, Western China. Earth and Planetary Science Letters, 484: 353–362. https://doi.org/10.1016/j.epsl.2017.12.023
    Liu, Y. J., Neubauer, F., Genser, J., et al., 2007. Geochronology of the Initiation and Displacement of the Altyn Strike-Slip Fault, Western China. Journal of Asian Earth Sciences, 29(2/3): 243–252. https://doi.org/10.1016/j.jseaes.2006.03.002
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010a. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571. https://doi.org/10.1093/petrology/egp082
    Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010b. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546. https://doi.org/10.1007/s11434-010-3052-4
    Long, X. P., Yuan, C., Sun, M., et al., 2014. New Geochemical and Combined Zircon U-Pb and Lu-Hf Isotopic Data of Orthogneisses in the Northern Altyn Tagh, Northern Margin of the Tibetan Plateau: Implication for Archean Evolution of the Dunhuang Block and Crust Formation in NW China. Lithos, 200/201: 418–431. https://doi.org/10.1016/j.lithos.2014.05.008
    Ludwig, K. R., 2012. User's Manual for Isoplot Version 3.75–4.15: A Geochronological Toolkit for Microsoft Excel. Berkley Geochronological Center Special Publication, Berkley
    MacPherson, C. G., Dreher, S. T., Thirlwall, M. F., 2006. Adakites without Slab Melting: High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3): 581–593. https://doi.org/10.1016/j.epsl.2005.12.034
    Mattinson, C. G., Menold, C. A., Zhang, J. X., et al., 2007. High- and Ultrahigh-Pressure Metamorphism in the North Qaidam and South Altyn Terranes, Western China. International Geology Review, 49(11): 969–995. https://doi.org/10.2747/0020-6814.49.11.969
    Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215–224. https://doi.org/10.1016/0012-8252(94)90029-9
    Niu, Y. L., Batiza, R., 1997. Trace Element Evidence from Seamounts for Recycled Oceanic Crust in the Eastern Pacific Mantle. Earth and Planetary Science Letters, 148(3/4): 471–483. https://doi.org/10.1016/s0012-821x(97)00048-4
    Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/BF00384745
    Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8–32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891–931. https://doi.org/10.1093/petrology/36.4.891
    Richards, J. P., Kerrich, R., 2007. Special Paper: Adakite-Like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis. Economic Geology, 102(4): 537–576. https://doi.org/10.2113/gsecongeo.102.4.537
    Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 3: 659. https://doi.org/10.1016/B0-08-043751-6/03016-4
    Searle, M. P., Elliott, J. R., Phillips, R. J., et al., 2011. Crustal-Lithospheric Structure and Continental Extrusion of Tibet. Journal of the Geological Society, 168(3): 633–672. https://doi.org/10.1144/0016-76492010-139
    Şengör, A. M. C., 1984. The Cimmeride Orogenic System and the Tectonics of Eurasia. Geological Society of America Special Papers, 195: 1–74. https://doi.org/10.1130/spe195-p1
    Şengör, A. M. C., 1989. The Tethyside Orogenic System: An Introduction. In: Tectonic Evolution of the Tethyan Region. Springer, Dordrecht. 1–22.https://doi.org/10.1007/978-94-009-2253-2_1
    Song, S. G., Bi, H. Z., Qi, S. S., et al., 2018. HP-UHP Metamorphic Belt in the East Kunlun Orogen: Final Closure of the Proto-Tethys Ocean and Formation of the Pan-North-China Continent. Journal of Petrology, 59(11): 2043–2060. https://doi.org/10.1093/petrology/egy089
    Song, S. G., Niu, Y. L., Su, L., et al., 2013. Tectonics of the North Qilian Orogen, NW China. Gondwana Research, 23(4): 1378–1401. https://doi.org/10.1016/j.gr.2012.02.004
    Stern, C. R., Kilian, R., 1996. Role of the Subducted Slab, Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123(3): 263–281. https://doi.org/10.1007/s004100050155
    Sun, P., Niu, Y. L., Guo, P. Y., et al., 2019. Multiple Mantle Metasomatism beneath the Leizhou Peninsula, South China: Evidence from Elemental and Sr-Nd-Pb-Hf Isotope Geochemistry of the Late Cenozoic Volcanic Rocks. International Geology Review, 61(14): 1768–1785. https://doi.org/10.1080/00206814.2018.1548307
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
    Vervoort, J. D., Patchett, P. J., Blichert-Toft, J., et al., 1999. Relationships between Lu-Hf and Sm-Nd Isotopic Systems in the Global Sedimentary System. Earth and Planetary Science Letters, 168(1/2): 79–99. https://doi.org/10.1016/s0012-821x(99)00047-3
    Wang, C. M., Tang, H. S., Zheng, Y., et al., 2019. Early Paleozoic Magmatism and Metallogeny Related to Proto-Tethys Subduction: Insights from Volcanic Rocks in the Northeastern Altyn Mountains, NW China. Gondwana Research, 75: 134–153. https://doi.org/10.1016/j.gr.2019.04.009
    Wang, C., Liu, L., Xiao, P. X., et al., 2014. Geochemical and Geochronologic Constraints for Paleozoic Magmatism Related to the Orogenic Collapse in the Qimantagh-South Altyn Region, Northwestern China. Lithos, 202/203: 1–20. https://doi.org/10.1016/j.lithos.2014.05.016
    Wang, C., Liu, L., Yang, W. Q., et al., 2013. Provenance and Ages of the Altyn Complex in Altyn Tagh: Implications for the Early Neoproterozoic Evolution of Northwestern China. Precambrian Research, 230: 193–208. https://doi.org/10.1016/j.precamres.2013.02.003
    Wang, M. J., Song, S. G., Niu, Y. L., et al., 2014. Post-Collisional Magmatism: Consequences of UHPM Terrane Exhumation and Orogen Collapse, N. Qaidam UHPM Belt, NW China. Lithos, 210/211: 181–198. https://doi.org/10.1016/j.lithos.2014.10.006
    Wang, Q., Li, X. H., Jia, X. H., et al., 2012. Late Early Cretaceous Adakitic Granitoids and Associated Magnesian and Potassium-Rich Mafic Enclaves and Dikes in the Tunchang-Fengmu Area, Hainan Province (South China): Partial Melting of Lower Crust and Mantle, and Magma Hybridization. Chemical Geology, 328: 222–243. https://doi.org/10.1016/j.chemgeo.2012.04.029
    Wang, Q., Wyman, D. A., Xu, J. F., et al., 2007. Early Cretaceous Adakitic Granites in the Northern Dabie Complex, Central China: Implications for Partial Melting and Delamination of Thickened Lower Crust. Geochimica et Cosmochimica Acta, 71(10): 2609–2636. https://doi.org/10.1016/j.gca.2007.03.008
    Wu, C. L., Chen, H. J., Wu, D., et al., 2018. Paleozoic Granitic Magmatism and Tectonic Evolution of the South Altun Block, NW China: Constraints from Zircon U-Pb Dating and Lu-Hf Isotope Geochemistry. Journal of Asian Earth Sciences, 160: 168–199. https://doi.org/10.1016/j.jseaes.2018.04.019
    Wu, C. L., Gao, Y. H., Li, Z. L., et al., 2014. Zircon SHRIMP U-Pb Dating of Granites from Dulan and the Chronological Framework of the North Qaidam UHP Belt, NW China. Science China Earth Sciences, 57(12): 2945–2965. https://doi.org/10.1007/s11430-014-4958-5
    Wu, C. L., Wooden, J. L., Robinson, P. T., et al., 2009. Geochemistry and Zircon SHRIMP U-Pb Dating of Granitoids from the West Segment of the North Qaidam. Science in China Series D: Earth Sciences, 52(11): 1771–1790. https://doi.org/10.1007/s11430-009-0147-3
    Wu, C. L., Wu, D., Mattinson, C., et al., 2019. Petrogenesis of Granitoids in the Wulan Area: Magmatic Activity and Tectonic Evolution in the North Qaidam, NW China. Gondwana Research, 67: 147–171. https://doi.org/10.1016/j.gr.2018.09.010
    Wu, C., Liu, C. F., Fan, S. Y., et al., 2020. Structural Analysis and Tectonic Evolution of the Western Domain of the Eastern Kunlun Range, Northwest Tibet. GSA Bulletin, 132(5/6): 1291–1315. https://doi.org/10.1130/b35388.1
    Wu, C., Yin, A., Zuza, A. V., et al., 2016. Pre-Cenozoic Geologic History of the Central and Northern Tibetan Plateau and the Role of Wilson Cycles in Constructing the Tethyan Orogenic System. Lithosphere, 8(3): 254–292. https://doi.org/10.1130/l494.1
    Wu, C., Zuza, A. V., Chen, X. H., et al., 2019a. Tectonics of the Eastern Kunlun Range: Cenozoic Reactivation of a Paleozoic-Early Mesozoic Orogen. Tectonics, 38(5): 1609–1650. https://doi.org/10.1029/2018tc005370
    Wu, C., Zuza, A. V., Yin, A., et al., 2017. Geochronology and Geochemistry of Neoproterozoic Granitoids in the Central Qilian Shan of Northern Tibet: Reconstructing the Amalgamation Processes and Tectonic History of Asia. Lithosphere, 9(4): 609–636. https://doi.org/10.1130/L640.1
    Wu, C., Zuza, A. V., Yin, A., et al., 2021. Punctuated Orogeny during the Assembly of Asia: Tectonostratigraphic Evolution of the North China Craton and the Qilian Shan from the Paleoproterozoic to Early Paleozoic. Tectonics, 40(4): e2020TC006503. https://doi.org/10.1029/2020tc006503
    Wu, C., Zuza, A. V., Zhou, Z. G., et al., 2019b. Mesozoic–Cenozoic Evolution of the Eastern Kunlun Range, Central Tibet, and Implications for Basin Evolution during the Indo-Asian Collision. Lithosphere, 11(4): 524–550. https://doi.org/10.1130/l1065.1
    Wu, L., Xiao, A. C., Yang, S. F., et al., 2012. Two-Stage Evolution of the Altyn Tagh Fault during the Cenozoic: New Insight from Provenance Analysis of a Geological Section in NW Qaidam Basin, NW China. Terra Nova, 24(5): 387–395. https://doi.org/10.1111/j.1365-3121.2012.01077.x
    Xu, J. F., Shinjo, R., Defant, M. J., et al., 2002. Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust? Geology, 30(12): 1111–1114.https://doi.org/10.1130/0091-7613(2002)030<1111:oomair>2.0.co;2 doi: 10.1130/0091-7613(2002)030<1111:oomair>2.0.co;2
    Yan, Z., Fu, C. L., Aitchison, J. C., et al., 2019. Retro-Foreland Basin Development in Response to Proto-Tethyan Ocean Closure, NE Tibet Plateau. Tectonics, 38(12): 4229–4248. https://doi.org/10.1029/2019tc005560
    Ye, X. T., Zhang, C. L., Wang, Q., et al., 2020. Subduction Initiation of Proto-Tethys Ocean and Back-Arc Extension in the Northern Altun Mountains, Northwestern China: Evidence from High-Mg Diorites and A-Type Rhyolites. Lithos, 376/377: 105748. https://doi.org/10.1016/j.lithos.2020.105748
    Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211–280. https://doi.org/10.1146/annurev.earth.28.1.211
    Yin, A., Rumelhart, P. E., Butler, R., et al., 2002. Tectonic History of the Altyn Tagh Fault System in Northern Tibet Inferred from Cenozoic Sedimentation. Geological Society of America Bulletin, 114(10): 1257–1295.https://doi.org/10.1130/0016-7606(2002)114<1257:thotat>2.0.co;2 doi: 10.1130/0016-7606(2002)114<1257:thotat>2.0.co;2
    Yu, L., Sun, F. Y., Li, L., et al., 2019. Geochronology, Geochemistry, and Sr-Nd-Hf Isotopic Compositions of Mafic-Ultramafic Intrusions in the Niubiziliang Ni-(Cu) Sulfide Deposit, North Qaidam Orogenic Belt, NW China: Implications for Magmatic Source, Geodynamic Setting, and Petrogenesis. Lithos, 326: 158–173. https://doi.org/10.1016/j.lithos.2018.12.027
    Zhang, J. X., Mattinson, C. G., Yu, S. Y., et al., 2014. Combined Rutile-Zircon Thermometry and U-Pb Geochronology: New Constraints on Early Paleozoic HP/UHT Granulite in the South Altyn Tagh, North Tibet, China. Lithos, 200: 241–257. https://doi.org/10.1016/j.lithos.2014.05.006
    Zhang, J. X., Yu, S. Y., Mattinson, C. G., 2017. Early Paleozoic Polyphase Metamorphism in Northern Tibet, China. Gondwana Research, 41: 267–289. https://doi.org/10.1016/j.gr.2015.11.009
    Zhang, Q. C., Wu, Z. H., Chen, X. H., et al., 2019. Proto-Tethys Oceanic Slab Break-Off: Insights from Early Paleozoic Magmatic Diversity in the West Kunlun Orogen, NW Tibetan Plateau. Lithos, 346/347: 105147. https://doi.org/10.1016/j.lithos.2019.07.014
    Zhao, G. C., Wang, Y. J., Huang, B. C., et al., 2018. Geological Reconstructions of the East Asian Blocks: From the Breakup of Rodinia to the Assembly of Pangea. Earth-Science Reviews, 186: 262–286. https://doi.org/10.1016/j.earscirev.2018.10.003
    Zhao, S. J., Li, S. Z., Liu, X., et al., 2015. The Northern Boundary of the Proto-Tethys Ocean: Constraints from Structural Analysis and U-Pb Zircon Geochronology of the North Qinling Terrane. Journal of Asian Earth Sciences, 113: 560–574. https://doi.org/10.1016/j.jseaes.2015.09.005
    Zheng, K., Wu, C. L., Lei, M., et al., 2019. Petrogenesis and Tectonic Implications of Granitoids from Western North Altun, Northwest China. Lithos, 340/341: 255–269. https://doi.org/10.1016/j.lithos.2019.05.019
    Zhu, W., Wu, C. D., Wang, J. L., et al., 2017. Heavy Mineral Compositions and Zircon U-Pb Ages of Cenozoic Sandstones in the SW Qaidam Basin, Northern Tibetan Plateau: Implications for Provenance and Tectonic Setting. Journal of Asian Earth Sciences, 146: 233–250. https://doi.org/10.1016/j.jseaes.2017.05.023
    Zuza, A. V., Wu, C., Reith, R. C., et al., 2018. Tectonic Evolution of the Qilian Shan: An Early Paleozoic Orogen Reactivated in the Cenozoic. GSA Bulletin, 130(5/6): 881–925. https://doi.org/10.1130/b31721.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views(151) PDF downloads(130) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return