Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 6
Dec 2025
Turn off MathJax
Article Contents
Xing Li, Yilin Xiao, Olivier Nadeau, Dong-Yong Li, Haiyang Liu, Zeming Zhang, Zhenhui Hou. Contrasting Behavior for Li-Mg Isotopes during Subduction: Insights from Garnet in the Yardoi Schists, Tibet. Journal of Earth Science, 2025, 36(6): 2437-2449. doi: 10.1007/s12583-022-1697-y
Citation: Xing Li, Yilin Xiao, Olivier Nadeau, Dong-Yong Li, Haiyang Liu, Zeming Zhang, Zhenhui Hou. Contrasting Behavior for Li-Mg Isotopes during Subduction: Insights from Garnet in the Yardoi Schists, Tibet. Journal of Earth Science, 2025, 36(6): 2437-2449. doi: 10.1007/s12583-022-1697-y

Contrasting Behavior for Li-Mg Isotopes during Subduction: Insights from Garnet in the Yardoi Schists, Tibet

doi: 10.1007/s12583-022-1697-y
More Information
  • Corresponding author: Yilin Xiao, ylxiao@ustc.edu.cn; Dong-Yong Li, ldy@ustc.edu.cn
  • Received Date: 11 Feb 2022
  • Accepted Date: 07 Jun 2022
  • Issue Publish Date: 30 Dec 2025
  • It has long been recognized that garnet has the capacity to preserve the trace element and isotopic signature of distinct metamorphic growth zones because of its high closure temperature. Combined with the large size of certain garnet porphyroblast, this allows investigating variations in metamorphic conditions such as pressure, temperature, deviatoric stress, and fluid composition, which occur during subduction-related metamorphism. Here, one garnet porphyroblast of 6 cm diameter was sampled from the Yardoi schists of Tibet, and the major-, trace-, and Li-Mg isotopic compositions of distinct growth zones were determined in situ. The δ7Li values range from +6.0‰ to +4.1‰ and follow 'S-shaped' patterns on both sides of the garnet's core, revealing a two-stage growth process corresponding to the fluid-assisted sequential recrystallization of chlorite and micas during prograde metamorphism. By contrast, once corrected for the overprinting by retrograde metamorphism, the δ26Mg values vary monotonically from -1.73‰ in the core to -1.32‰ in the outer rim, reflecting a single-step process interpreted to result from increasing temperature and the solid-state recrystallization of chlorite-biotite during prograde metamorphism. This different behavior of Li and Mg isotopes is interpreted to result from the fact that Li is more fluid-mobile than the major element Mg.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1–S6) are available in the online version of this article at https://doi.org/10.1007/s12583-022-1697-y.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Baxter, E. F., Caddick, M. J., Ague, J. J., 2013. Garnet: Common Mineral, Uncommonly Useful. Elements, 9(6): 415–419. https://doi.org/10.2113/gselements.9.6.415
    Baxter, E. F., Caddick, M. J., Dragovic, B., 2017. Garnet: A Rock-Forming Mineral Petrochronometer. Reviews in Mineralogy and Geochemistry, 83(1): 469–533. https://doi.org/10.2138/rmg.2017.83.15
    Bishop, F. C., Smith, J. V., Dawson, J. B., 1976. Na, P, Ti and Coordination of Si in Garnet from Peridotite and Eclogite Xenoliths. Nature, 260(5553): 696–697. https://doi.org/10.1038/260696a0
    Brenan, J. M., Ryerson, F. J., Shaw, H. F., 1998. The Role of Aqueous Fluids in the Slab-to-Mantle Transfer of Boron, Beryllium, and Lithium during Subduction: Experiments and Models. Geochimica et Cosmochimica Acta, 62(19/20): 3337–3347. https://doi.org/10.1016/s0016-7037(98)00224-5
    Cahalan, R. C., Kelly, E. D., Carlson, W. D., 2014. Rates of Li Diffusion in Garnet: Coupled Transport of Li and Y + REEs. American Mineralogist, 99(8/9): 1676–1682. https://doi.org/10.2138/am.2014.4676
    Carlson, W. D., 2002. Scales of Disequilibrium and Rates of Equilibration during Metamorphism. American Mineralogist, 87(2/3): 185–204. https://doi.org/10.2138/am-2002-2-301
    Carlson, W. D., 2006. Rates of Fe, Mg, Mn, and Ca Diffusion in Garnet. American Mineralogist, 91(1): 1–11. https://doi.org/10.2138/am.2006.2043
    Carlson, W. D., 2012. Rates and Mechanism of Y, REE, and Cr Diffusion in Garnet. American Mineralogist, 97(10): 1598–1618. https://doi.org/10.2138/am.2012.4108
    Carlson, W. D., Gale, J. D., Wright, K., 2014. Incorporation of Y and REEs in Aluminosilicate Garnet: Energetics from Atomistic Simulation. American Mineralogist, 99(5/6): 1022–1034. https://doi.org/10.2138/am.2014.4720
    Chakraborty, S., Ganguly, J., 1992. Cation Diffusion in Aluminosilicate Garnets: Experimental Determination in Spessartine-Almandine Diffusion Couples, Evaluation of Effective Binary Diffusion Coefficients, and Applications. Contributions to Mineralogy and Petrology, 111(1): 74–86. https://doi.org/10.1007/bf00296579
    Chan, L. H., Alt, J. C., Teagle, D. A. H., 2002. Lithium and Lithium Isotope Profiles through the Upper Oceanic Crust: A Study of Seawater-Basalt Exchange at ODP Sites 504B and 896A. Earth and Planetary Science Letters, 201(1): 187–201. https://doi.org/10.1016/s0012-821x(02)00707-0
    Connolly, J. A. D., 2005. Computation of Phase Equilibria by Linear Programming: A Tool for Geodynamic Modeling and Its Application to Subduction Zone Decarbonation. Earth and Planetary Science Letters, 236(1/2): 524–541. https://doi.org/10.1016/j.epsl.2005.04.033
    Deer, W. A., Howie, R. A., Zussman, J., 2013. An Introduction to the Rock-Forming Minerals. Longman Scientific and Technical. 696. https://doi.org/10.1180/dhz
    Ding, H. X., Zhang, Z. M., Dong, X., et al., 2016a. Early Eocene (c. 50 Ma) Collision of the Indian and Asian Continents: Constraints from the North Himalayan Metamorphic Rocks, Southeastern Tibet. Earth and Planetary Science Letters, 435: 64–73. https://doi.org/10.1016/j.epsl.2015.12.006
    Ding, H. X., Zhang, Z. M., Hu, K. M., et al., 2016b. P-T-t-D Paths of the North Himalayan Metamorphic Rocks: Implications for the Himalayan Orogeny. Tectonophysics, 683: 393–404. https://doi.org/10.1016/j.tecto.2016.06.035
    Enami, M., Cong, B. L., Yoshida, T., et al., 1995. A Mechanism for Na Incorporation in Garnet: An Example from Garnet in Orthogneiss from the Su-Lu Terrane, Eastern China. American Mineralogist, 80(5/6): 475–482. https://doi.org/10.2138/am-1995-5-608
    Flesch, G. D., Anderson, A. R., Svec, H. J., 1973. A Secondary Isotopic Standard for 6Li/7Li Determinations. International Journal of Mass Spectrometry and Ion Physics, 12(3): 265–272. https://doi.org/10.1016/0020-7381(73)80043-9
    Frost, B. R., Tracy, R. J., 1991. P-T Paths from Zoned Garnets; Some Minimum Criteria. American Journal of Science, 291(10): 917–939. https://doi.org/10.2475/ajs.291.10.917
    Gao, X. Y., Zheng, Y. F., Chen, Y. X., 2012. Dehydration Melting of Ultrahigh-Pressure Eclogite in the Dabie Orogen: Evidence from Multiphase Solid Inclusions in Garnet. Journal of Metamorphic Geology, 30(2): 193–212. https://doi.org/10.1111/j.1525-1314.2011.00962.x
    Gerrits, A. R., Inglis, E. C., Dragovic, B., et al., 2019. Release of Oxidizing Fluids in Subduction Zones Recorded by Iron Isotope Zonation in Garnet. Nature Geoscience, 12(12): 1029–1033. https://doi.org/10.1038/s41561-019-0471-y
    Guillot, S., Mahéo, G., de Sigoyer, J., et al., 2008. Tethyan and Indian Subduction Viewed from the Himalayan High- to Ultrahigh-Pressure Metamorphic Rocks. Tectonophysics, 451(1/2/3/4): 225–241. https://doi.org/10.1016/j.tecto.2007.11.059
    Hickmott, D. D., Shimizu, N., 1990. Trace Element Zoning in Garnet from the Kwoiek Area, British Columbia: Disequilibrium Partitioning during Garnet Growth? Contributions to Mineralogy and Petrology, 104(6): 619–630. https://doi.org/10.1007/bf01167283
    Holland, T. J. B., Powell, R., 1998. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 16(3): 309–343. https://doi.org/10.1111/j.1525-1314.1998.00140.x
    Ireland, R. H. P., Penniston-Dorland, S. C., 2015. Chemical Interactions between a Sedimentary Diapir and Surrounding Magma: Evidence from the Phepane Dome and Bushveld Complex, South Africa. American Mineralogist, 100(8/9): 1985–2000. https://doi.org/10.2138/am-2015-5196
    Jeffcoate, A. B., Elliott, T., Kasemann, S. A., et al., 2007. Li Isotope Fractionation in Peridotites and Mafic Melts. Geochimica et Cosmochimica Acta, 71(1): 202–218. https://doi.org/10.1016/j.gca.2006.06.1611
    Jiang, J. X., Lasaga, A. C., 1990. The Effect of Post-Growth Thermal Events on Growth-Zoned Garnet: Implications for Metamorphic P-T History Calculations. Contributions to Mineralogy and Petrology, 105(4): 454–459. https://doi.org/10.1007/bf00286832
    Kohn, M. J., 2014. Himalayan Metamorphism and Its Tectonic Implications. Annual Review of Earth and Planetary Sciences, 42: 381–419. https://doi.org/10.1146/annurev-earth-060313-055005
    Li, W. Y., Teng, F. Z., Wing, B. A., et al., 2014. Limited Magnesium Isotope Fractionation during Metamorphic Dehydration in Metapelites from the Onawa Contact Aureole, Maine. Geochemistry, Geophysics, Geosystems, 15(2): 408–415. https://doi.org/10.1002/2013gc004992
    Li, W. Y., Teng, F. Z., Xiao, Y. L., et al., 2016. Empirical Calibration of the Clinopyroxene-Garnet Magnesium Isotope Geothermometer and Implications. Contributions to Mineralogy and Petrology, 171(7): 61. https://doi.org/10.1007/s00410-016-1269-1
    Li, W. Y., Teng, F. Z., Ke, S., et al., 2010. Heterogeneous Magnesium Isotopic Composition of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 74(23): 6867–6884. https://doi.org/10.1016/j.gca.2010.08.030
    Li, X., Liu, L., Liao, X. Y., et al., 2023. Metamorphic Evolution of Garnet Amphibolite from the Yaganbuyang Area in the South Altyn Orogen, West China: Insights from Phase Equilibria Modeling and Geochronology. Journal of Earth Science, 34(3): 640–657. https://doi.org/10.1007/s12583-021-1439-6
    Lin, S. W., Zhang, Q. Q., Gao, X. Y., et al., 2024. Metamorphic Evolution of Garnet Amphibolite at Songshugou in the North Qinling Orogen: Evidence from Garnet Geochemistry and Zircon Geochronology. Earth Science, 49(8): 2714–2735. https://doi.org/10.3799/dqkx.2020.320 (in Chinese with English Abstract)
    Liu, H. Y., Sun, H., Xiao, Y. L., et al., 2019. Lithium Isotope Systematics of the Sumdo Eclogite, Tibet: Tracing Fluid/Rock Interaction of Subducted Low-T Altered Oceanic Crust. Geochimica et Cosmochimica Acta, 246: 385–405. https://doi.org/10.1016/j.gca.2018.12.002
    Liu, H. Y., Xiao, Y. L., Sun, H., et al., 2020. Trace Elements and Li Isotope Compositions across the Kamchatka Arc: Constraints on Slab-Derived Fluid Sources. Journal of Geophysical Research: Solid Earth, 125(5): e2019JB019237. https://doi.org/10.1029/2019jb019237
    Liu, S. K., Su, B. X., 2024. Lithium Isotopic Fractionation in Minerals from Pegmatites: Perspective of Crystal Chemistry. Journal of Earth Science, 35(6): 1895–1901. https://doi.org/10.1007/s12583-024-0037-9
    Marschall, H. R., Tang, M., 2020. High-Temperature Processes: Is It Time for Lithium Isotopes? Elements, 16(4): 247–252. https://doi.org/10.2138/gselements.16.4.247
    Marschall, H. R., Altherr, R., Rüpke, L., 2007. Squeezing out the Slab—Modelling the Release of Li, Be and B during Progressive High-Pressure Metamorphism. Chemical Geology, 239(3/4): 323–335. https://doi.org/10.1016/j.chemgeo.2006.08.008
    McDonough, W. F., Sun, S.-S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
    Moore, R. O., Gurney, J. J., Griffin, W. L., et al., 1991. Ultra-High Pressure Garnet Inclusions in Monastery Diamonds: Trace Element Abundance Patterns and Conditions of Origin. European Journal of Mineralogy, 3(2): 213–230. https://doi.org/10.1127/ejm/3/2/0213
    Nadeau, O., Voinot, A., Leybourne, M., 2021. Lithium Isotopes at Gold Deposits: Insights from the Giant Kirkland Lake Gold Deposit, Canada. Precambrian Research, 362: 106308. https://doi.org/10.1016/j.precamres.2021.106308
    Nikonow, W., Rammlmair, D., Meima, J. A., et al., 2019. Advanced Mineral Characterization and Petrographic Analysis by Μ-EDXRF, LIBS, HSI and Hyperspectral Data Merging. Mineralogy and Petrology, 113(3): 417–431. https://doi.org/10.1007/s00710-019-00657-z
    Paquin, J., Altherr, R., 2002. Subduction-Related Lithium Metasomatism during Exhumation of the Alpe Arami Ultrahigh-Pressure Garnet Peridotite (Central Alps, Switzerland). Contributions to Mineralogy and Petrology, 143(5): 623–640. https://doi.org/10.1007/s00410-002-0367-4
    Penniston-Dorland, S. C., Baumgartner, L. P., Dragovic, B., et al., 2020. Li Isotope Zoning in Garnet from Franciscan Eclogite and Amphibolite: The Role of Subduction-Related Fluids. Geochimica et Cosmochimica Acta, 286: 198–213. https://doi.org/10.1016/j.gca.2020.07.025
    Penniston-Dorland, S. C., Bebout, G. E., Pogge von Strandmann, P. A. E., et al., 2012. Lithium and Its Isotopes as Tracers of Subduction Zone Fluids and Metasomatic Processes: Evidence from the Catalina Schist, California, USA. Geochimica et Cosmochimica Acta, 77: 530–545. https://doi.org/10.1016/j.gca.2011.10.038
    Penniston-Dorland, S. C., Sorensen, S. S., Ash, R. D., et al., 2010. Lithium Isotopes as a Tracer of Fluids in a Subduction Zone Mélange: Franciscan Complex, CA. Earth and Planetary Science Letters, 292(1/2): 181–190. https://doi.org/10.1016/j.epsl.2010.01.034
    Putnis, A., Austrheim, H., 2012. Mechanisms of Metasomatism and Metamorphism on the Local Mineral Scale: The Role of Dissolution-Reprecipitation during Mineral Re-Equilibration. Metasomatism and the Chemical Transformation of Rock. Springer, Berlin, Heidelberg. 141–170. https://doi.org/10.1007/978-3-642-28394-9_5.
    Qiu, L., Rudnick, R. L., McDonough, W. F., et al., 2011. The Behavior of Lithium in Amphibolite- to Granulite-Facies Rocks of the Ivrea-Verbano Zone, NW Italy. Chemical Geology, 289(1/2): 76–85. https://doi.org/10.1016/j.chemgeo.2011.07.014
    Reid, A. M., Brown, R. W., Dawson, J. B., et al., 1976. Garnet and Pyroxene Compositions in Some Diamondiferous Eclogites. Contributions to Mineralogy and Petrology, 58(2): 203–220. https://doi.org/10.1007/bf00382185
    Sauzéat, L., Rudnick, R. L., Chauvel, C., et al., 2015. New Perspectives on the Li Isotopic Composition of the Upper Continental Crust and Its Weathering Signature. Earth and Planetary Science Letters, 428: 181–192. https://doi.org/10.1016/j.epsl.2015.07.032
    Schertl, H. P., Schreyer, W., Chopin, C., 1991. The Pyrope-Coesite Rocks and Their Country Rocks at Parigi, Dora Maira Massif, Western Alps: Detailed Petrography, Mineral Chemistry and PT-Path. Contributions to Mineralogy and Petrology, 108(1): 1–21. https://doi.org/10.1007/bf00307322
    Schwandt, C. S., Cygan, R. T., Westrich, H. R., 1995. Mg Self-Diffusion in Pyrope Garnet. American Mineralogist, 80(5/6): 483–490. https://doi.org/10.2138/am-1995-5-609
    Simons, K. K., Harlow, G. E., Brueckner, H. K., et al., 2010. Lithium Isotopes in Guatemalan and Franciscan HP-LT Rocks: Insights into the Role of Sediment-Derived Fluids during Subduction. Geochimica et Cosmochimica Acta, 74(12): 3621–3641. https://doi.org/10.1016/j.gca.2010.02.033
    Sun, H., Gao, Y. J., Xiao, Y. L., et al., 2016. Lithium Isotope Fractionation during Incongruent Melting: Constraints from Post-Collisional Leucogranite and Residual Enclaves from Bengbu Uplift, China. Chemical Geology, 439: 71–82. https://doi.org/10.1016/j.chemgeo.2016.06.004
    Tang, Y. J., Zhang, H. F., Ying, J. F., 2007. Review of the Lithium Isotope System as a Geochemical Tracer. International Geology Review, 49(4): 374–388. https://doi.org/10.2747/0020-6814.49.4.374
    Teng, F. Z., Li, W. Y., Rudnick, R. L., et al., 2010. Contrasting Lithium and Magnesium Isotope Fractionation during Continental Weathering. Earth and Planetary Science Letters, 300(1/2): 63–71. https://doi.org/10.1016/j.epsl.2010.09.036
    Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2007. Limited Lithium Isotopic Fractionation during Progressive Metamorphic Dehydration in Metapelites: A Case Study from the Onawa Contact Aureole, Maine. Chemical Geology, 239(1/2): 1–12. https://doi.org/10.1016/j.chemgeo.2006.12.003
    Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2004. Lithium Isotopic Composition and Concentration of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 68(20): 4167–4178. https://doi.org/10.1016/j.gca.2004.03.031
    Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2006. Lithium Isotopic Systematics of Granites and Pegmatites from the Black Hills, South Dakota. American Mineralogist, 91(10): 1488–1498. https://doi.org/10.2138/am.2006.2083
    Tian, S. H., Hou, Z. Q., Chen, X. Y., et al., 2020. Magnesium Isotopic Behaviors between Metamorphic Rocks and Their Associated Leucogranites, and Implications for Himalayan Orogenesis. Gondwana Research, 87: 23–40. https://doi.org/10.1016/j.gr.2020.06.006
    Tian, S. H., Zhao, Y., Hou, Z. Q., et al., 2017. Lithium Isotopic Composition and Concentration of Himalayan Leucogranites and the Indian Lower Continental Crust. Lithos, 284: 416–428. https://doi.org/10.1016/j.lithos.2017.05.001
    Tomascak, P. B., Langmuir, C. H., le Roux, P. J., et al., 2008. Lithium Isotopes in Global Mid-Ocean Ridge Basalts. Geochimica et Cosmochimica Acta, 72(6): 1626–1637. https://doi.org/10.1016/j.gca.2007.12.021
    Vielzeuf, D., Baronnet, A., Perchuk, A. L., et al., 2007. Calcium Diffusivity in Alumino-Silicate Garnets: An Experimental and ATEM Study. Contributions to Mineralogy and Petrology, 154(2): 153–170. https://doi.org/10.1007/s00410-007-0184-x
    Wang, L., Zhang, G. B., 2024. Fractionation Behavior of Stable Isotopes (Fe-K-Li-B-Ba) in Subducted Plates. Earth Science, 49(2): 685–699. https://doi.org/10.3799/dqkx.2022.176 (in Chinese with English Abstract)
    Wang, S. J., Teng, F. Z., Li, S. G., et al., 2014. Magnesium Isotopic Systematics of Mafic Rocks during Continental Subduction. Geochimica et Cosmochimica Acta, 143: 34–48. https://doi.org/10.1016/j.gca.2014.03.029
    Woodland, A. B., Seitz, H. M., Altherr, R., et al., 2002. Li Abundances in Eclogite Minerals: A Clue to a Crustal or Mantle Origin? Contributions to Mineralogy and Petrology, 143(5): 587–601. https://doi.org/10.1007/s00410-002-0363-8
    Wu, J., Tian, S. H., Li, G. M., et al., 2025. Petrogenesis of Lalong Leucogranites in Eastern Himalayan Orogenic Belt and Relationship with South Tibetan Detachment System. Earth Science, 50(7): 2593–2612. https://doi.org/10.3799/dqkx.2025.049 (in Chinese with English Abstract)
    Wunder, B., Meixner, A., Romer, R. L., et al., 2006. Temperature-Dependent Isotopic Fractionation of Lithium between Clinopyroxene and High-Pressure Hydrous Fluids. Contributions to Mineralogy and Petrology, 151(1): 112–120. https://doi.org/10.1007/s00410-005-0049-0
    Wunder, B., Meixner, A., Romer, R. L., et al., 2007. Lithium Isotope Fractionation between Li-Bearing Staurolite, Li-Mica and Aqueous Fluids: An Experimental Study. Chemical Geology, 238(3/4): 277–290. https://doi.org/10.1016/j.chemgeo.2006.12.001
    Ye, X. Y., Li, B., Tan, D. B., et al., 2024. Lithium Isotope Analytical Methods and Implications for Rare-Metal Mineralization in Granite-Pegmatite Systems: An Overview. Journal of Earth Science, 35(6): 1878–1894. https://doi.org/10.1007/s12583-023-1972-1
    Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211–280. https://doi.org/10.1146/annurev.earth.28.1.211
    Zack, T., Tomascak, P. B., Rudnick, R. L., et al., 2003. Extremely Light Li in Orogenic Eclogites: The Role of Isotope Fractionation during Dehydration in Subducted Oceanic Crust. Earth and Planetary Science Letters, 208(3/4): 279–290. https://doi.org/10.1016/s0012-821x(03)00035-9
    Zeng, L. S., Gao, L., Xie, K. J., et al., 2011. Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes: Melting Thickened Lower Continental Crust. Earth and Planetary Science Letters, 303(3/4): 251–266. https://doi.org/10.1016/j.epsl.2011.01.005
    Zhang, Y., Cherniak, D. J., 2010. Diffusion in Minerals and Melts: Introduction. Reviews in Mineralogy and Geochemistry, 72(1): 1–4. https://doi.org/10.2138/rmg.2010.72.1
    Zhang, J. J., Santosh, M., Wang, X. X., et al., 2012. Tectonics of the Northern Himalaya since the India-Asia Collision. Gondwana Research, 21(4): 939–960. https://doi.org/10.1016/j.gr.2011.11.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views(533) PDF downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return