Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 6
Dec 2024
Turn off MathJax
Article Contents
Lirong Yang, Xu Dai, Xiaokang Liu, Yan Feng, Shouyi Jiang, Fengyu Wang, Huyue Song, Li Tian, Haijun Song. Foraminiferal Extinction and Size Reduction during the Permian-Triassic Transition in Southern Tibet. Journal of Earth Science, 2024, 35(6): 1799-1809. doi: 10.1007/s12583-023-1847-x
Citation: Lirong Yang, Xu Dai, Xiaokang Liu, Yan Feng, Shouyi Jiang, Fengyu Wang, Huyue Song, Li Tian, Haijun Song. Foraminiferal Extinction and Size Reduction during the Permian-Triassic Transition in Southern Tibet. Journal of Earth Science, 2024, 35(6): 1799-1809. doi: 10.1007/s12583-023-1847-x

Foraminiferal Extinction and Size Reduction during the Permian-Triassic Transition in Southern Tibet

doi: 10.1007/s12583-023-1847-x
More Information
  • Corresponding author: Haijun Song, haijunsong@cug.edu.cn
  • Received Date: 14 Apr 2023
  • Accepted Date: 03 May 2023
  • Available Online: 26 Dec 2024
  • Issue Publish Date: 30 Dec 2024
  • The miniaturization of organisms during the Permian-Triassic mass extinction, as an ecological strategy in response to environmental devastation, has been widely recognized in diverse marine invertebrates. Previous studies on the extinction process and miniaturization of foraminifers in the Permian-Triassic interval have relied on the fossil record of the low-latitude Paleotethys or a global database, although data and materials from the high-latitude Neotethys region are still rare. To reveal the evolutionary patterns and spatial variability of foraminifers at different latitudes and paleogeographic contexts, here we investigated the fossil distribution and size variation of foraminifers in the Selong Section of southern Tibet, located in the mid-latitude Neotethys of the Southern Hemisphere during the Permian-Triassic transition. The results show that the foraminifer of the Selong Section experienced a two-pulsed extinction (total species extinction rate of 71%), consistent with the time in South China but with a lower magnitude of extinction. Meanwhile, the data show that foraminiferal test volume was significantly miniaturized following the first pulse of extinction event: the mean size of post-extinction foraminifer was only 15% of that in the pre-extinction, mainly reflected by the disappearance of large forms as well as occurrences of smaller survivors and originators. Combined with the South China record, size data from southern Tibet indicate that the miniaturization of foraminifera is synchronous in the Paleotethys and Neotethys but smaller in magnitude in the Neotethys. We propose that ocean anoxia and acidification may be the environmental pressures leading to local and global foraminiferal miniaturizations, along with global warming, which might play a dominant role.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Algeo, T. J., Chen, Z. Q., Fraiser, M. L., et al., 2011. Terrestrial-Marine Teleconnections in the Collapse and Rebuilding of Early Triassic Marine Ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1/2): 1–11. https://doi.org/10.1016/j.palaeo.2011.01.011
    Ashton, K. G., Tracy, M. C., Queiroz, A., 2000. Is Bergmann's Rule Valid for Mammals? The American Naturalist, 156(4): 390–415. https://doi.org/10.1086/303400
    Benton, M. J., 2015. When Life Nearly Died: The Greatest Mass Extinction of All Time, Second Edition. Thames & Hudson, London
    Burgess, S. D., Muirhead, J. D., Bowring, S. A., 2017. Initial Pulse of Siberian Traps Sills as the Trigger of the End-Permian Mass Extinction. Nature Communications, 8: 164. https://doi.org/10.1038/s41467-017-00083-9
    Chen, J., Song, H. J., He, W. H., et al., 2019. Size Variation of Brachiopods from the Late Permian through the Middle Triassic in South China: Evidence for the Lilliput Effect Following the Permian-Triassic Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 248–257. https://doi.org/10.1016/j.palaeo.2018.07.013
    Chen, Z. Q., Kaiho, K., George, A. D., 2005. Survival Strategies of Brachiopod Faunas from the End-Permian Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 224(1/2/3): 232–269. https://doi.org/10.1016/j.palaeo.2005.04.014
    Dai, X., Brayard, A., Ware, D., et al., 2023. High-Resolution Early Triassic Ammonoid Biostratigraphy of South Tibet, China and Implications for Global Correlations. Earth-Science Reviews, 239: 104384. https://doi.org/10.1016/j.earscirev.2023.104384
    Dai, X., Korn, D., Song, H. J., 2021. Morphological Selectivity of the Permian-Triassic Ammonoid Mass Extinction. Geology, 49(9): 1112–1116. https://doi.org/10.1130/g48788.1
    Dal Corso, J., Song, H. J., Callegaro, S., et al., 2022. Environmental Crises at the Permian-Triassic Mass Extinction. Nature Reviews Earth & Environment, 3: 197–214. https://doi.org/10.1038/s43017-021-00259-4
    Erwin, D. H., 2006. How Life on Earth Nearly Ended 250 Million Years Ago. Princeton University Press, Princeton
    Fan, J. X., Shen, S. Z., Erwin, D. H., et al., 2020. A High-Resolution Summary of Cambrian to Early Triassic Marine Invertebrate Biodiversity. Science, 367(6475): 272–277. https://doi.org/10.1126/science.aax4953
    Feng, Y., Song, H. J., Bond, D. P. G., 2020. Size Variations in Foraminifers from the Early Permian to the Late Triassic: Implications for the Guadalupian-Lopingian and the Permian-Triassic Mass Extinctions. Paleobiology, 46(4): 511–532. https://doi.org/10.1017/pab.2020.37
    Forster, J., Hirst, A. G., Atkinson, D., 2012. Warming-Induced Reductions in Body Size are Greater in Aquatic than Terrestrial Species. Proceedings of the National Academy of Sciences of the United States of America, 109(47): 19310–19314. https://doi.org/10.1073/pnas.1210460109
    Foster, W. J., Gliwa, J., Lembke, C., et al., 2020. Evolutionary and Ecophenotypic Controls on Bivalve Body Size Distributions Following the End-Permian Mass Extinction. Global and Planetary Change, 185: 103088. https://doi.org/10.1016/j.gloplacha.2019.103088
    Groves, J. R., Altiner, D., 2005. Survival and Recovery of Calcareous Foraminifera Pursuant to the End-Permian Mass Extinction. Comptes Rendus Palevol, 4(6/7): 487–500. https://doi.org/10.1016/j.crpv.2004.12.007
    Groves, J. R., Rettori, R., Payne, J. L., et al., 2007. End-Permian Mass Extinction of Lagenide Foraminifers in the Southern Alps (Northern Italy). Journal of Paleontology, 81(3): 415–434. https://doi.org/10.1666/05123.1
    Hayami, I., 1997. Size Changes of Bivalves and a Hypothesis about the Cause of Mass Extinction. Fossils, 62: 24–36 (in Japanese)
    He, W. H., Shi, G. R., Feng, Q. L., et al., 2007. Brachiopod Miniaturization and Its Possible Causes during the Permian-Triassic Crisis in Deep Water Environments, South China. Palaeogeography, Palaeoclima-tology, Palaeoecology, 252(1/2): 145–163. https://doi.org/10.1016/j.palaeo.2006.11.040
    He, W. H., Shi, G. R., Yang, T. L., et al., 2016. Patterns of Brachiopod Faunal and Body-Size Changes across the Permian-Triassic Boundary: Evidence from the Daoduishan Section in Meishan Area, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 72–84. https://doi.org/10.1016/j.palaeo.2015.11.023
    Huang, H., Shi, Y. K., Jin, X. C., 2015. Permian Fusulinid Biostratigraphy of the Baoshan Block in Western Yunnan, China with Constraints on Paleogeography and Paleoclimate. Journal of Asian Earth Sciences, 104: 127–144. https://doi.org/10.1016/j.jseaes.2014.10.010
    Huang, J. Y., Martínez-Pérez, C., Zhang, Q. Y., et al., 2023. Exceptionally Preserved Conodont Natural Assemblages from the Middle Triassic Luoping Biota, Yunnan Province, China: Implications for Architecture of Conodont Feeding Apparatus. Journal of Earth Science, 34: 1762–1776. https://doi.org/10.1007/s12583-022-1793-z
    Huang, Y. F., Tong, J. N., Tian, L., et al., 2023. Temporal Shell-Size Variations of Bivalves in South China from the Late Permian to the Early Middle Triassic. Palaeogeography, Palaeoclimatology, Palaeo-ecology, 609: 111307. https://doi.org/10.1016/j.palaeo.2022.111307
    Jin, Y. G., Wang, Y., Wang, W., et al., 2000. Pattern of Marine Mass Extinction near the Permian-Triassic Mass Extinction Boundary in South China. Science, 289(5478): 432–436. https://doi.org/10.1126/science.289.5478.432
    Joachimski, M. M., Lai, X., Shen, S., et al., 2012. Climate Warming in the Latest Permian and the Permian-Triassic Mass Extinction. Geology, 40(3): 195–198. https://doi.org/10.1130/g32707.1
    Jurikova, H., Gutjahr, M., Wallmann, K., et al., 2020. Permian-Triassic Mass Extinction Pulses Driven by Major Marine Carbon Cycle Perturbations. Nature Geoscience, 13: 745–750. https://doi.org/10.1038/s41561-020-00646-4
    Li, M. T., Song, H. J., Woods, A. D., et al., 2019. Facies and Evolution of the Carbonate Factory during the Permian-Triassic Crisis in South Tibet, China. Sedimentology, 66(7): 3008–3028. https://doi.org/10.1111/sed.12619
    Liu, X. K., Song, H. J., Bond, D. P. G., et al., 2020. Migration Controls Extinction and Survival Patterns of Foraminifers during the Permian-Triassic Crisis in South China. Earth Science Reviews, 209: 103329. https://doi.org/10.1016/j.earscirev.2020.103329
    Luo, G. M., Lai, X. L., Shi, G. R., et al., 2008. Size Variation of Conodont Elements of the Hindeodus-Isarcicella Clade during the Permian-Triassic Transition in South China and Its Implication for Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 264(1/2): 176–187. https://doi.org/10.1016/j.palaeo.2008.04.015
    Luo, M., Shi, G. R., Buatois, L. A., et al., 2020. Trace Fossils as Proxy for Biotic Recovery after the End-Permian Mass Extinction: A Critical Review. Earth-Science Reviews, 203: 103059. https://doi.org/10.1016/j.earscirev.2019.103059
    McGowan, A. J., Smith, A. B., Taylor, P. D., 2009. Faunal Diversity, Heterogeneity and Body Size in the Early Triassic: Testing Post-Extinction Paradigms in the Virgin Limestone of Utah, USA. Australian Journal of Earth Sciences, 56(6): 859–872. https://doi.org/10.1080/08120090903002839
    Muscente, A. D., Prabhu, A., Zhong, H., et al., 2018. Quantifying Ecological Impacts of Mass Extinctions with Network Analysis of Fossil Communities. Proceedings of the National Academy of Sciences of the United States of America, 115(20): 5217–5222. https://doi.org/10.1073/pnas.1719976115
    Mutter, R. J., Neuman, A. G., 2009. Recovery from the End-Permian Extinction Event: Evidence from "Lilliput Listracanthus". Palaeogeography, Palaeoclimatology, Palaeoecology, 284(1/2): 22–28. https://doi.org/10.1016/j.palaeo.2009.08.024
    Orchard, M. J., Nassichuk, W. W., Rui, L., 1994. Conodonts from the Lower Griesbachian Otoceras latilobatum Bed of Selong, Tibet and the Position of the Permian-Triassic Boundary. Canadian Society or Petroleum Geologists, 17: 823–843
    Payne, J. L., Lehrmann, D. J., Wei, J. Y., et al., 2004. Large Perturbations of the Carbon Cycle during Recovery from the End-Permian Extinction. Science, 305(5683): 506–509. https://doi.org/10.1126/science.1097023
    Payne, J. L., 2005. Evolutionary Dynamics of Gastropod Size across the End-Permian Extinction and through the Triassic Recovery Interval. Paleobiology, 31(2): 269–290. https://doi.org/10.1666/0094-8373(2005)031[0269:edogsa]2.0.co;2
    Rojas, A., Calatayud, J., Kowalewski, M., et al., 2021. A Multiscale View of the Phanerozoic Fossil Record Reveals the Three Major Biotic Transitions. Communications Biology, 4: 309. https://doi.org/10.1038/s42003-021-01805-y
    Sakagami, S., Sciunnach, D., Garzanti, E., 2006. Late Paleozoic and Triassic Bryozoans from the Tethys Himalaya (N India, Nepal and S Tibet). Facies, 52: 279–298. https://doi.org/10.1007/s10347-005-0043-z
    Schaal, E. K., Clapham, M. E., Rego, B. L., et al., 2016. Comparative Size Evolution of Marine Clades from the Late Permian through Middle Triassic. Paleobiology, 42(1): 127–142. https://doi.org/10.1017/pab.2015.36
    Scotese, C. R., 2014. Atlas of Middle & Late Permian and Triassic Paleogeographic Maps, Maps 43–48 from Volume 3 of the PALEOMAP Atlas for ArcGIS (Jurassic and Triassic) and Maps 49–52 from Volume 4 of the PALEOMAP PaleoAtlas for ArcGIS (Late Paleozoic). Mollweide Projection, PALEOMAP Project, Evanston, IL
    Sepkoski, J. J. Jr, 1981. A Factor Analytic Description of the Phanerozoic Marine Fossil Record. Paleobiology, 7(1): 36–53. https://doi.org/10.1017/s0094837300003778
    Shen, S. Z., Archbold, N. W., Shi, G. R., et al., 2000. Permian Brachiopods from the Selong Xishan Section, Xizang (Tibet), China Part 1: Strati-graphy, Strophomenida, Productida and Rhynchonellida. Geobios, 33(6): 725–752. https://doi.org/10.1016/s0016-6995(00)80125-4
    Shen, S. Z., Archbold, N. W., Shi, G. R., et al., 2001. Permian Brachiopods from the Selong Xishan Section, Xiang (Tibet), China. Part 2: Palaeobiogeographical and Palaeoecological Implications, Spiriferida, Athyridida and Terebratulida. Geobios, 34(2): 157–182. https://doi.org/10.1016/s0016-6995(01)80059-0
    Shen, S. Z., Crowley, J. L., Wang, Y., et al., 2011. Calibrating the End-Permian Mass Extinction. Science, 334(6061): 1367–1372. https://doi.org/10.1126/science.1213454
    Shen, S. Z., Cao, C. Q., Henderson, C. M., et al., 2006. End-Permian Mass Extinction Pattern in the Northern Peri-Gondwanan Region. Palaeo-world, 15(1): 3–30. https://doi.org/10.1016/j.palwor.2006.03.005
    Shi, Y. K., Huang, H., Jin, X. C., et al., 2011. Early Permian Fusulinids from the Baoshan Block, Western Yunnan, China and Their Paleobiogeographic Significance. Journal of Paleontology, 85(3): 489–501. https://doi.org/10.1666/10-039.1
    Song, H. J., Tong, J. N., Chen, Z. Q., 2009. Two Episodes of Foraminiferal Extinction near the Permian-Triassic Boundary at the Meishan Section, South China. Australian Journal of Earth Sciences, 56(6): 765–773. https://doi.org/10.1080/08120090903002599
    Song, H. J., Wignall, P. B., Tong, J. N., et al., 2013. Two Pulses of Extinction during the Permian-Triassic Crisis. Nature Geoscience, 6: 52–56. https://doi.org/10.1038/ngeo1649
    Song, H. J., Wignall, P. B., Tong, J. N., et al., 2012. Geochemical Evidence from Bio-Apatite for Multiple Oceanic Anoxic Events during Permian-Triassic Transition and the Link with End-Permian Extinction and Recovery. Earth and Planetary Science Letters, 353: 12–21. https://doi.org/10.1016/j.epsl.2012.07.005
    Song, H. J., Wignall, P. B., Dunhill, A. M., 2018. Decoupled Taxonomic and Ecological Recoveries from the Permo-Triassic Extinction. Science Advances, 4(10): eaat5091. https://doi.org/10.1126/sciadv.aat5091
    Song, H. J., Huang, S., Jia, E. H., et al., 2020. Flat Latitudinal Diversity Gradient Caused by the Permian-Triassic Mass Extinction. Proceedings of the National Academy of Sciences of the United States of America, 117(30): 17578–17583. https://doi.org/10.1073/pnas.1918953117
    Song, H. J., Tong, J. N., Chen, Z. Q., 2011. Evolutionary Dynamics of the Permian–Triassic Foraminifer Size: Evidence for Lilliput Effect in the End-Permian Mass Extinction and Its Aftermath. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1/2): 98–110. https://doi.org/10.1016/j.palaeo.2010.10.036
    Song, H. J., Kemp, D. B., Tian, L., et al., 2021. Thresholds of Temperature Change for Mass Extinctions. Nature Communications, 12: 4694. https://doi.org/10.1038/s41467-021-25019-2
    Stanley, S. M., 2016. Estimates of the Magnitudes of Major Marine Mass Extinctions in Earth History. Proceedings of the National Academy of Sciences of the United States of America, 113(42): E6325–E6334. https://doi.org/10.1073/pnas.1613094113
    Sun, Y. D., Joachimski, M. M., Wignall, P. B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338(6105): 366–370. https://doi.org/10.1126/science.1224126
    Tappan, H., Loeblich, A. R., 1988. Foraminiferal Evolution, Diversification, and Extinction. Journal of Paleontology, 62(5): 695–714. https://doi.org/10.1017/s0022336000018977
    Tian, L., Benton, M. J., 2020. Predicting Biotic Responses to Future Climate Warming with Classic Ecogeographic Rules. Current Biology: CB, 30(13): R744–R749. https://doi.org/10.1016/j.cub.2020.06.003
    Twitchett, R. J., 2007. The Lilliput Effect in the Aftermath of the End-Permian Extinction Event. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1/2): 132–144. https://doi.org/10.1016/j.palaeo.2006.11.038
    Urbanek, A., 1993. Biotic Crises in the History of Upper Silurian Graptoloids: A Palaeobiological Model. Historical Biology, 7(1): 29–50. https://doi.org/10.1080/10292389309380442
    Wang, D. B., Wang, B. D., Pan, G. T., et al., 2021. Remnants of Early Carboniferous Oceanic Crust in the Eastern Segment of Bangonghu-Nujiang Suture Belt and Its Tectonic Significance. Acta Petrologica Sinica, 37(10): 3048–3066. https://doi.org/10.18654/1000-0569/2021.10.06 (in Chinese with English Abstract)
    Wang, L. N., Wignall, P., Sun, Y. D., et al., 2017. New Permian-Triassic Conodont Data from Selong (Tibet) and the Youngest Occurrence of Vjalovognathus. Journal of Asian Earth Sciences, 146: 152–167. https://doi.org/10.1016/j.jseaes.2017.05.014
    Wang, Y., 1976. Triassic Ammonoids from the Mount Jolmo Lungma Region. Report of Scientific Expedition in the Mount Jolmo Lungma Region (1966–1968). Palaeontology, 3: 223–438
    Wang, Z. H., Wang, Y. G., 1995. Permian-Lower Triassic Conodonts from Selong Xishan of Nyalam, S. Tibet, China. Acta Micropalaeontologica Sinica, 12(4): 333–348 (in Chinese with English Abstract)
    Wignall, P. B., 2001. Large Igneous Provinces and Mass Extinctions. Earth-Science Reviews, 53(1/2): 1–33. https://doi.org/10.1016/s0012-8252(00)00037-4
    Wignall, P. B., Newton, R., 2003. Contrasting Deep-Water Records from the Upper Permian and Lower Triassic of South Tibet and British Columbia: Evidence for a Diachronous Mass Extinction. PALAIOS, 18(2): 153–167.https://doi.org/10.1669/0883-1351(2003)18153:cdrftu>2.0.co;2 doi: 10.1669/0883-1351(2003)18153:cdrftu>2.0.co;2
    Wu, Y. Y., Chu, D. L., Tong, J. N., et al., 2021. Six-Fold Increase of Atmospheric pCO2 during the Permian-Triassic Mass Extinction. Nature Communications, 12: 2137. https://doi.org/10.1038/s41467-021-22298-7
    Yin, H. F., Song, H. J., 2013. Mass Extinction and Pangea Integration during the Paleozoic-Mesozoic Transition. Science China Earth Sciences, 56(11): 1791–1803. https://doi.org/10.1007/s11430-013-4624-3
    Yuan, D. X., Zhang, Y. C., Shen, S. Z., 2018. Conodont Succession and Reassessment of Major Events around the Permian-Triassic Boundary at the Selong Xishan Section, Southern Tibet, China. Global and Planetary Change, 161: 194–210. https://doi.org/10.1016/j.gloplacha.2017.12.024
    Zhang, F. F., Romaniello, S. J., Algeo, T. J., et al., 2018. Multiple Episodes of Extensive Marine Anoxia Linked to Global Warming and Continental Weathering Following the Latest Permian Mass Extinction. Science Advances, 4(4): e1602921. https://doi.org/10.1126/sciadv.1602921
    Zhang, H., Zhang, F. F., Chen, J. B., et al., 2021. Felsic Volcanism as a Factor Driving the End-Permian Mass Extinction. Science Advances, 7(47): eabh1390. https://doi.org/10.1126/sciadv.abh1390
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views(111) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return