Citation: | Lirong Yang, Xu Dai, Xiaokang Liu, Yan Feng, Shouyi Jiang, Fengyu Wang, Huyue Song, Li Tian, Haijun Song. Foraminiferal Extinction and Size Reduction during the Permian-Triassic Transition in Southern Tibet. Journal of Earth Science, 2024, 35(6): 1799-1809. doi: 10.1007/s12583-023-1847-x |
The miniaturization of organisms during the Permian-Triassic mass extinction, as an ecological strategy in response to environmental devastation, has been widely recognized in diverse marine invertebrates. Previous studies on the extinction process and miniaturization of foraminifers in the Permian-Triassic interval have relied on the fossil record of the low-latitude Paleotethys or a global database, although data and materials from the high-latitude Neotethys region are still rare. To reveal the evolutionary patterns and spatial variability of foraminifers at different latitudes and paleogeographic contexts, here we investigated the fossil distribution and size variation of foraminifers in the Selong Section of southern Tibet, located in the mid-latitude Neotethys of the Southern Hemisphere during the Permian-Triassic transition. The results show that the foraminifer of the Selong Section experienced a two-pulsed extinction (total species extinction rate of 71%), consistent with the time in South China but with a lower magnitude of extinction. Meanwhile, the data show that foraminiferal test volume was significantly miniaturized following the first pulse of extinction event: the mean size of post-extinction foraminifer was only 15% of that in the pre-extinction, mainly reflected by the disappearance of large forms as well as occurrences of smaller survivors and originators. Combined with the South China record, size data from southern Tibet indicate that the miniaturization of foraminifera is synchronous in the Paleotethys and Neotethys but smaller in magnitude in the Neotethys. We propose that ocean anoxia and acidification may be the environmental pressures leading to local and global foraminiferal miniaturizations, along with global warming, which might play a dominant role.
Algeo, T. J., Chen, Z. Q., Fraiser, M. L., et al., 2011. Terrestrial-Marine Teleconnections in the Collapse and Rebuilding of Early Triassic Marine Ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1/2): 1–11. https://doi.org/10.1016/j.palaeo.2011.01.011 |
Ashton, K. G., Tracy, M. C., Queiroz, A., 2000. Is Bergmann's Rule Valid for Mammals? The American Naturalist, 156(4): 390–415. https://doi.org/10.1086/303400 |
Benton, M. J., 2015. When Life Nearly Died: The Greatest Mass Extinction of All Time, Second Edition. Thames & Hudson, London |
Burgess, S. D., Muirhead, J. D., Bowring, S. A., 2017. Initial Pulse of Siberian Traps Sills as the Trigger of the End-Permian Mass Extinction. Nature Communications, 8: 164. https://doi.org/10.1038/s41467-017-00083-9 |
Chen, J., Song, H. J., He, W. H., et al., 2019. Size Variation of Brachiopods from the Late Permian through the Middle Triassic in South China: Evidence for the Lilliput Effect Following the Permian-Triassic Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 248–257. https://doi.org/10.1016/j.palaeo.2018.07.013 |
Chen, Z. Q., Kaiho, K., George, A. D., 2005. Survival Strategies of Brachiopod Faunas from the End-Permian Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 224(1/2/3): 232–269. https://doi.org/10.1016/j.palaeo.2005.04.014 |
Dai, X., Brayard, A., Ware, D., et al., 2023. High-Resolution Early Triassic Ammonoid Biostratigraphy of South Tibet, China and Implications for Global Correlations. Earth-Science Reviews, 239: 104384. https://doi.org/10.1016/j.earscirev.2023.104384 |
Dai, X., Korn, D., Song, H. J., 2021. Morphological Selectivity of the Permian-Triassic Ammonoid Mass Extinction. Geology, 49(9): 1112–1116. https://doi.org/10.1130/g48788.1 |
Dal Corso, J., Song, H. J., Callegaro, S., et al., 2022. Environmental Crises at the Permian-Triassic Mass Extinction. Nature Reviews Earth & Environment, 3: 197–214. https://doi.org/10.1038/s43017-021-00259-4 |
Erwin, D. H., 2006. How Life on Earth Nearly Ended 250 Million Years Ago. Princeton University Press, Princeton |
Fan, J. X., Shen, S. Z., Erwin, D. H., et al., 2020. A High-Resolution Summary of Cambrian to Early Triassic Marine Invertebrate Biodiversity. Science, 367(6475): 272–277. https://doi.org/10.1126/science.aax4953 |
Feng, Y., Song, H. J., Bond, D. P. G., 2020. Size Variations in Foraminifers from the Early Permian to the Late Triassic: Implications for the Guadalupian-Lopingian and the Permian-Triassic Mass Extinctions. Paleobiology, 46(4): 511–532. https://doi.org/10.1017/pab.2020.37 |
Forster, J., Hirst, A. G., Atkinson, D., 2012. Warming-Induced Reductions in Body Size are Greater in Aquatic than Terrestrial Species. Proceedings of the National Academy of Sciences of the United States of America, 109(47): 19310–19314. https://doi.org/10.1073/pnas.1210460109 |
Foster, W. J., Gliwa, J., Lembke, C., et al., 2020. Evolutionary and Ecophenotypic Controls on Bivalve Body Size Distributions Following the End-Permian Mass Extinction. Global and Planetary Change, 185: 103088. https://doi.org/10.1016/j.gloplacha.2019.103088 |
Groves, J. R., Altiner, D., 2005. Survival and Recovery of Calcareous Foraminifera Pursuant to the End-Permian Mass Extinction. Comptes Rendus Palevol, 4(6/7): 487–500. https://doi.org/10.1016/j.crpv.2004.12.007 |
Groves, J. R., Rettori, R., Payne, J. L., et al., 2007. End-Permian Mass Extinction of Lagenide Foraminifers in the Southern Alps (Northern Italy). Journal of Paleontology, 81(3): 415–434. https://doi.org/10.1666/05123.1 |
Hayami, I., 1997. Size Changes of Bivalves and a Hypothesis about the Cause of Mass Extinction. Fossils, 62: 24–36 (in Japanese) |
He, W. H., Shi, G. R., Feng, Q. L., et al., 2007. Brachiopod Miniaturization and Its Possible Causes during the Permian-Triassic Crisis in Deep Water Environments, South China. Palaeogeography, Palaeoclima-tology, Palaeoecology, 252(1/2): 145–163. https://doi.org/10.1016/j.palaeo.2006.11.040 |
He, W. H., Shi, G. R., Yang, T. L., et al., 2016. Patterns of Brachiopod Faunal and Body-Size Changes across the Permian-Triassic Boundary: Evidence from the Daoduishan Section in Meishan Area, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 72–84. https://doi.org/10.1016/j.palaeo.2015.11.023 |
Huang, H., Shi, Y. K., Jin, X. C., 2015. Permian Fusulinid Biostratigraphy of the Baoshan Block in Western Yunnan, China with Constraints on Paleogeography and Paleoclimate. Journal of Asian Earth Sciences, 104: 127–144. https://doi.org/10.1016/j.jseaes.2014.10.010 |
Huang, J. Y., Martínez-Pérez, C., Zhang, Q. Y., et al., 2023. Exceptionally Preserved Conodont Natural Assemblages from the Middle Triassic Luoping Biota, Yunnan Province, China: Implications for Architecture of Conodont Feeding Apparatus. Journal of Earth Science, 34: 1762–1776. https://doi.org/10.1007/s12583-022-1793-z |
Huang, Y. F., Tong, J. N., Tian, L., et al., 2023. Temporal Shell-Size Variations of Bivalves in South China from the Late Permian to the Early Middle Triassic. Palaeogeography, Palaeoclimatology, Palaeo-ecology, 609: 111307. https://doi.org/10.1016/j.palaeo.2022.111307 |
Jin, Y. G., Wang, Y., Wang, W., et al., 2000. Pattern of Marine Mass Extinction near the Permian-Triassic Mass Extinction Boundary in South China. Science, 289(5478): 432–436. https://doi.org/10.1126/science.289.5478.432 |
Joachimski, M. M., Lai, X., Shen, S., et al., 2012. Climate Warming in the Latest Permian and the Permian-Triassic Mass Extinction. Geology, 40(3): 195–198. https://doi.org/10.1130/g32707.1 |
Jurikova, H., Gutjahr, M., Wallmann, K., et al., 2020. Permian-Triassic Mass Extinction Pulses Driven by Major Marine Carbon Cycle Perturbations. Nature Geoscience, 13: 745–750. https://doi.org/10.1038/s41561-020-00646-4 |
Li, M. T., Song, H. J., Woods, A. D., et al., 2019. Facies and Evolution of the Carbonate Factory during the Permian-Triassic Crisis in South Tibet, China. Sedimentology, 66(7): 3008–3028. https://doi.org/10.1111/sed.12619 |
Liu, X. K., Song, H. J., Bond, D. P. G., et al., 2020. Migration Controls Extinction and Survival Patterns of Foraminifers during the Permian-Triassic Crisis in South China. Earth Science Reviews, 209: 103329. https://doi.org/10.1016/j.earscirev.2020.103329 |
Luo, G. M., Lai, X. L., Shi, G. R., et al., 2008. Size Variation of Conodont Elements of the Hindeodus-Isarcicella Clade during the Permian-Triassic Transition in South China and Its Implication for Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 264(1/2): 176–187. https://doi.org/10.1016/j.palaeo.2008.04.015 |
Luo, M., Shi, G. R., Buatois, L. A., et al., 2020. Trace Fossils as Proxy for Biotic Recovery after the End-Permian Mass Extinction: A Critical Review. Earth-Science Reviews, 203: 103059. https://doi.org/10.1016/j.earscirev.2019.103059 |
McGowan, A. J., Smith, A. B., Taylor, P. D., 2009. Faunal Diversity, Heterogeneity and Body Size in the Early Triassic: Testing Post-Extinction Paradigms in the Virgin Limestone of Utah, USA. Australian Journal of Earth Sciences, 56(6): 859–872. https://doi.org/10.1080/08120090903002839 |
Muscente, A. D., Prabhu, A., Zhong, H., et al., 2018. Quantifying Ecological Impacts of Mass Extinctions with Network Analysis of Fossil Communities. Proceedings of the National Academy of Sciences of the United States of America, 115(20): 5217–5222. https://doi.org/10.1073/pnas.1719976115 |
Mutter, R. J., Neuman, A. G., 2009. Recovery from the End-Permian Extinction Event: Evidence from "Lilliput Listracanthus". Palaeogeography, Palaeoclimatology, Palaeoecology, 284(1/2): 22–28. https://doi.org/10.1016/j.palaeo.2009.08.024 |
Orchard, M. J., Nassichuk, W. W., Rui, L., 1994. Conodonts from the Lower Griesbachian Otoceras latilobatum Bed of Selong, Tibet and the Position of the Permian-Triassic Boundary. Canadian Society or Petroleum Geologists, 17: 823–843 |
Payne, J. L., Lehrmann, D. J., Wei, J. Y., et al., 2004. Large Perturbations of the Carbon Cycle during Recovery from the End-Permian Extinction. Science, 305(5683): 506–509. https://doi.org/10.1126/science.1097023 |
Payne, J. L., 2005. Evolutionary Dynamics of Gastropod Size across the End-Permian Extinction and through the Triassic Recovery Interval. Paleobiology, 31(2): 269–290. https://doi.org/10.1666/0094-8373(2005)031[0269:edogsa]2.0.co;2 |
Rojas, A., Calatayud, J., Kowalewski, M., et al., 2021. A Multiscale View of the Phanerozoic Fossil Record Reveals the Three Major Biotic Transitions. Communications Biology, 4: 309. https://doi.org/10.1038/s42003-021-01805-y |
Sakagami, S., Sciunnach, D., Garzanti, E., 2006. Late Paleozoic and Triassic Bryozoans from the Tethys Himalaya (N India, Nepal and S Tibet). Facies, 52: 279–298. https://doi.org/10.1007/s10347-005-0043-z |
Schaal, E. K., Clapham, M. E., Rego, B. L., et al., 2016. Comparative Size Evolution of Marine Clades from the Late Permian through Middle Triassic. Paleobiology, 42(1): 127–142. https://doi.org/10.1017/pab.2015.36 |
Scotese, C. R., 2014. Atlas of Middle & Late Permian and Triassic Paleogeographic Maps, Maps 43–48 from Volume 3 of the PALEOMAP Atlas for ArcGIS (Jurassic and Triassic) and Maps 49–52 from Volume 4 of the PALEOMAP PaleoAtlas for ArcGIS (Late Paleozoic). Mollweide Projection, PALEOMAP Project, Evanston, IL |
Sepkoski, J. J. Jr, 1981. A Factor Analytic Description of the Phanerozoic Marine Fossil Record. Paleobiology, 7(1): 36–53. https://doi.org/10.1017/s0094837300003778 |
Shen, S. Z., Archbold, N. W., Shi, G. R., et al., 2000. Permian Brachiopods from the Selong Xishan Section, Xizang (Tibet), China Part 1: Strati-graphy, Strophomenida, Productida and Rhynchonellida. Geobios, 33(6): 725–752. https://doi.org/10.1016/s0016-6995(00)80125-4 |
Shen, S. Z., Archbold, N. W., Shi, G. R., et al., 2001. Permian Brachiopods from the Selong Xishan Section, Xiang (Tibet), China. Part 2: Palaeobiogeographical and Palaeoecological Implications, Spiriferida, Athyridida and Terebratulida. Geobios, 34(2): 157–182. https://doi.org/10.1016/s0016-6995(01)80059-0 |
Shen, S. Z., Crowley, J. L., Wang, Y., et al., 2011. Calibrating the End-Permian Mass Extinction. Science, 334(6061): 1367–1372. https://doi.org/10.1126/science.1213454 |
Shen, S. Z., Cao, C. Q., Henderson, C. M., et al., 2006. End-Permian Mass Extinction Pattern in the Northern Peri-Gondwanan Region. Palaeo-world, 15(1): 3–30. https://doi.org/10.1016/j.palwor.2006.03.005 |
Shi, Y. K., Huang, H., Jin, X. C., et al., 2011. Early Permian Fusulinids from the Baoshan Block, Western Yunnan, China and Their Paleobiogeographic Significance. Journal of Paleontology, 85(3): 489–501. https://doi.org/10.1666/10-039.1 |
Song, H. J., Tong, J. N., Chen, Z. Q., 2009. Two Episodes of Foraminiferal Extinction near the Permian-Triassic Boundary at the Meishan Section, South China. Australian Journal of Earth Sciences, 56(6): 765–773. https://doi.org/10.1080/08120090903002599 |
Song, H. J., Wignall, P. B., Tong, J. N., et al., 2013. Two Pulses of Extinction during the Permian-Triassic Crisis. Nature Geoscience, 6: 52–56. https://doi.org/10.1038/ngeo1649 |
Song, H. J., Wignall, P. B., Tong, J. N., et al., 2012. Geochemical Evidence from Bio-Apatite for Multiple Oceanic Anoxic Events during Permian-Triassic Transition and the Link with End-Permian Extinction and Recovery. Earth and Planetary Science Letters, 353: 12–21. https://doi.org/10.1016/j.epsl.2012.07.005 |
Song, H. J., Wignall, P. B., Dunhill, A. M., 2018. Decoupled Taxonomic and Ecological Recoveries from the Permo-Triassic Extinction. Science Advances, 4(10): eaat5091. https://doi.org/10.1126/sciadv.aat5091 |
Song, H. J., Huang, S., Jia, E. H., et al., 2020. Flat Latitudinal Diversity Gradient Caused by the Permian-Triassic Mass Extinction. Proceedings of the National Academy of Sciences of the United States of America, 117(30): 17578–17583. https://doi.org/10.1073/pnas.1918953117 |
Song, H. J., Tong, J. N., Chen, Z. Q., 2011. Evolutionary Dynamics of the Permian–Triassic Foraminifer Size: Evidence for Lilliput Effect in the End-Permian Mass Extinction and Its Aftermath. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1/2): 98–110. https://doi.org/10.1016/j.palaeo.2010.10.036 |
Song, H. J., Kemp, D. B., Tian, L., et al., 2021. Thresholds of Temperature Change for Mass Extinctions. Nature Communications, 12: 4694. https://doi.org/10.1038/s41467-021-25019-2 |
Stanley, S. M., 2016. Estimates of the Magnitudes of Major Marine Mass Extinctions in Earth History. Proceedings of the National Academy of Sciences of the United States of America, 113(42): E6325–E6334. https://doi.org/10.1073/pnas.1613094113 |
Sun, Y. D., Joachimski, M. M., Wignall, P. B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338(6105): 366–370. https://doi.org/10.1126/science.1224126 |
Tappan, H., Loeblich, A. R., 1988. Foraminiferal Evolution, Diversification, and Extinction. Journal of Paleontology, 62(5): 695–714. https://doi.org/10.1017/s0022336000018977 |
Tian, L., Benton, M. J., 2020. Predicting Biotic Responses to Future Climate Warming with Classic Ecogeographic Rules. Current Biology: CB, 30(13): R744–R749. https://doi.org/10.1016/j.cub.2020.06.003 |
Twitchett, R. J., 2007. The Lilliput Effect in the Aftermath of the End-Permian Extinction Event. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1/2): 132–144. https://doi.org/10.1016/j.palaeo.2006.11.038 |
Urbanek, A., 1993. Biotic Crises in the History of Upper Silurian Graptoloids: A Palaeobiological Model. Historical Biology, 7(1): 29–50. https://doi.org/10.1080/10292389309380442 |
Wang, D. B., Wang, B. D., Pan, G. T., et al., 2021. Remnants of Early Carboniferous Oceanic Crust in the Eastern Segment of Bangonghu-Nujiang Suture Belt and Its Tectonic Significance. Acta Petrologica Sinica, 37(10): 3048–3066. https://doi.org/10.18654/1000-0569/2021.10.06 (in Chinese with English Abstract) |
Wang, L. N., Wignall, P., Sun, Y. D., et al., 2017. New Permian-Triassic Conodont Data from Selong (Tibet) and the Youngest Occurrence of Vjalovognathus. Journal of Asian Earth Sciences, 146: 152–167. https://doi.org/10.1016/j.jseaes.2017.05.014 |
Wang, Y., 1976. Triassic Ammonoids from the Mount Jolmo Lungma Region. Report of Scientific Expedition in the Mount Jolmo Lungma Region (1966–1968). Palaeontology, 3: 223–438 |
Wang, Z. H., Wang, Y. G., 1995. Permian-Lower Triassic Conodonts from Selong Xishan of Nyalam, S. Tibet, China. Acta Micropalaeontologica Sinica, 12(4): 333–348 (in Chinese with English Abstract) |
Wignall, P. B., 2001. Large Igneous Provinces and Mass Extinctions. Earth-Science Reviews, 53(1/2): 1–33. https://doi.org/10.1016/s0012-8252(00)00037-4 |
Wignall, P. B., Newton, R., 2003. Contrasting Deep-Water Records from the Upper Permian and Lower Triassic of South Tibet and British Columbia: Evidence for a Diachronous Mass Extinction. PALAIOS, 18(2): 153–167.https://doi.org/10.1669/0883-1351(2003)18153:cdrftu>2.0.co;2 doi: 10.1669/0883-1351(2003)18153:cdrftu>2.0.co;2 |
Wu, Y. Y., Chu, D. L., Tong, J. N., et al., 2021. Six-Fold Increase of Atmospheric pCO2 during the Permian-Triassic Mass Extinction. Nature Communications, 12: 2137. https://doi.org/10.1038/s41467-021-22298-7 |
Yin, H. F., Song, H. J., 2013. Mass Extinction and Pangea Integration during the Paleozoic-Mesozoic Transition. Science China Earth Sciences, 56(11): 1791–1803. https://doi.org/10.1007/s11430-013-4624-3 |
Yuan, D. X., Zhang, Y. C., Shen, S. Z., 2018. Conodont Succession and Reassessment of Major Events around the Permian-Triassic Boundary at the Selong Xishan Section, Southern Tibet, China. Global and Planetary Change, 161: 194–210. https://doi.org/10.1016/j.gloplacha.2017.12.024 |
Zhang, F. F., Romaniello, S. J., Algeo, T. J., et al., 2018. Multiple Episodes of Extensive Marine Anoxia Linked to Global Warming and Continental Weathering Following the Latest Permian Mass Extinction. Science Advances, 4(4): e1602921. https://doi.org/10.1126/sciadv.1602921 |
Zhang, H., Zhang, F. F., Chen, J. B., et al., 2021. Felsic Volcanism as a Factor Driving the End-Permian Mass Extinction. Science Advances, 7(47): eabh1390. https://doi.org/10.1126/sciadv.abh1390 |