Citation: | Mingxing Gao, Yanwu Lyu. Asymmetric Deformation along the Altyn Tagh Fault Zone Revealed by Geomorphic Analysis. Journal of Earth Science, 2025, 36(4): 1380-1394. doi: 10.1007/s12583-023-1948-4 |
The Altyn Tagh fault zone (ATFZ), which defines the northern boundary of the Tibetan Plateau, is one of the most striking features related to the India/Eurasia collision. Concurrent with the strike-slip movement, vertical uplift, and topographic building have formed a ~3 000–4 000 m height difference between the Tarim Basin (TB) in the north and the Tibetan Plateau in the south. However, the spatial uplift characteristics and mechanism have not been well understood, particularly in the Late Quaternary. This research presents a comprehensive geomorphic analysis to establish the Late Quaternary tectonic uplift pattern for the entire ATFZ. We statistically excluded climatic and lithological factors that provided prominence for tectonism; combined with leveling data, river incision rate, and seismicity data, we reveal the along-strike and across-fault vertical deformation variations. The spatial distribution of the integrated geomorphic index (
Avouac, J. P. , Tapponnier, P. , 1993. Kinematic Model of Active Deformation in Central Asia. Geophysical Research Letters, 20(10): 895–898. https://doi.org/10.1029/93GL00128 |
Bedrosian, P. A. , Unsworth, M. J. , Wang, F. , 2001. Structure of the Altyn Tagh Fault and Daxue Shan from Magnetotelluric Surveys: Implications for Faulting Associated with the Rise of the Tibetan Plateau. Tectonics, 20(4): 474–486. https://doi.org/10.1029/2000TC001215 |
Bendick, R. , Bilham, R. , Freymueller, J. , et al. , 2000. Geodetic Evidence for a Low Slip Rate in the Altyn Tagh Fault System. Nature, 404(6773): 69–72. https://doi.org/10.1038/35003555 |
Bernard, T. , Sinclair, H. D. , Gailleton, B. , et al. , 2019. Lithological Control on the Post-Orogenic Topography and Erosion History of the Pyrenees. Earth and Planetary Science Letters, 518: 53–66. https://doi.org/10.1016/j.epsl.2019.04.034 |
Biasi, G. P. , Weldon, R. J. , 2006. Estimating Surface Rupture Length and Magnitude of Paleoearthquakes from Point Measurements of Rupture Displacement. Bulletin of the Seismological Society of America, 96(5): 1612–1623. https://doi.org/10.1785/0120040172 |
Brookfield, M. E. , 1998. The Evolution of the Great River Systems of Southern Asia during the Cenozoic India-Asia Collision: rivers Draining Southwards. Geomorphology, 22(3/4): 285–312. https://doi.org/10.1016/S0169-555X(97)00082-2 |
Burbank, D. W. , Anderson, S. R. , 2001. Tectonic Geomorphology. Blackwell Scientific, Oxford. 1–274 |
Burchfiel, B. C. , Deng, Q. D. , Molnar, P. , et al. , 1989. Intracrustal Detachment within Zones of Continental Deformation. Geology, 17(8): 748–752.https://doi.org/10.1130/0091-7613(1989)0170448:idwzoc>2.3.co;2 doi: 10.1130/0091-7613(1989)0170448:idwzoc>2.3.co;2 |
Chang Z. , 2014. Research on Quantitative Geomorphologic indices of Bailongjiang drainage basin in the eastern Tibet Plateau based on Digital Elevation Models: [Dissertation]. Nanjing Normal University, Nanjing (in Chinese with English Abstract) |
Chen, Y. C. , Sung, Q. , Cheng, K. Y. , 2003. Along-Strike Variations of Morphotectonic Features in the Western Foothills of Taiwan: Tectonic Implications Based on Stream-Gradient and Hypsometric Analysis. Geomorphology, 56(1/2): 109–137. https://doi.org/10.1016/S0169-555X(03)00059-X |
Chen, Y. W. , Li, S. H. , Li, B. , 2012. Slip Rate of the Aksay Segment of Altyn Tagh Fault Revealed by OSL Dating of River Terraces. Quaternary Geochronology, 10: 291–299. https://doi.org/10.1016/j.quageo.2012.04.012 |
Chen, Y. W. , Li, S. H. , Sun, J. M. , et al. , 2013. OSL Dating of Offset Streams across the Altyn Tagh Fault: Channel Deflection, Loess Deposition and Implication for the Slip Rate. Tectonophysics, 594: 182–194. https://doi.org/10.1016/j.tecto.2013.04.002 |
Chinese State Bureau of Seismology, 1992. The Altyn Tagh Active Fault System: Special Publication. Seismology Publishing House, Beijing. 1–319 (in Chinese) |
Cowgill, E. , 2007. Impact of Riser Reconstructions on Estimation of Secular Variation in Rates of Strike–Slip faulting: Revisiting the Cherchen River Site along the Altyn Tagh Fault, NW China. Earth and Planetary Science Letters, 254(3/4): 239–255. https://doi.org/10.1016/j.epsl.2006.09.015 |
Cowgill, E. , An, Y. , Harrison, T. M. , et al. , 2003. Reconstruction of the Altyn Tagh Fault Based on U-Pb geochronology: Role of back Thrusts, Mantle Sutures, and Heterogeneous Crustal Strength in Forming the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 108(B7): 2346. https://doi.org/10.1029/2002JB002080 |
Cowgill, E. , An, Y. , Wang, X. F. , et al. , 2000. Is the North Altyn Fault Part of a Strike-Slip Duplex along the Altyn Tagh Fault System? Geology, 28(3): 255–258.https://doi.org/10.1130/0091-7613(2000)28<255:ITNAFP>2.0.CO;2 doi: 10.1130/0091-7613(2000)28<255:ITNAFP>2.0.CO;2 |
Cowgill, E. , Gold, R. D. , Chen, X. H. , et al. , 2009. Low Quaternary Slip Rate Reconciles Geodetic and Geologic Rates along the Altyn Tagh Fault, Northwestern Tibet. Geology, 37(7): 647–650. https://doi.org/10.1130/G25623A.1 |
Craddock, W. , Kirby, E. , Zhang, H. P. , 2011. Late Miocene-Pliocene Range Growth in the Interior of the Northeastern Tibetan Plateau. Lithosphere, 3(6): 420–438. https://doi.org/10.1130/L159.1 |
Cunningham, D. , Zhang, J. , Li, Y. F. , 2016. Late Cenozoic Transpressional Mountain Building Directly North of the Altyn Tagh Fault in the Sanweishan and Nanjieshan, North Tibetan Foreland, China. Tectonophysics, 687: 111–128. https://doi.org/10.1016/j.tecto.2016.09.010 |
El Hamdouni, R. , Irigaray, C. , Fernández, T. , et al. , 2008. Assessment of Relative Active Tectonics, Southwest Border of the Sierra Nevada (Southern Spain). Geomorphology, 96(1/2): 150–173. https://doi.org/10.1016/j.geomorph.2007.08.004 |
Elliott, A. J. , Oskin, M. E. , Liu-Zeng, J. , et al. , 2018. Persistent Rupture Terminations at a Restraining Bend from Slip Rates on the Eastern Altyn Tagh Fault. Tectonophysics, 733: 57–72. https://doi.org/10.1016/j.tecto.2018.01.004 |
Elliott, J. R. , Biggs, J. , Parsons, B. , et al. , 2008. InSAR Slip Rate Determination on the Altyn Tagh Fault, Northern Tibet, in the Presence of Topographically Correlated Atmospheric Delays. Geophysical Research Letters, 35(12): L12309. https://doi.org/10.1029/2008GL033659 |
England, P. , Molnar, P. , 1997. Active Deformation of Asia: From Kinematics to Dynamics. Science, 278(5338): 647–650 |
Gao, M. X. , Zeilinger, G. , Xu, X. W. , et al. , 2016. Active Tectonics Evaluation from Geomorphic Indices for the Central and the Southern Longmenshan Range on the Eastern Tibetan Plateau, China. Tectonics, 35(8): 1812–1826. https://doi.org/10.1002/2015TC004080 |
Ge, W. P. , Shen, Z. K. , Molnar, P. , et al. , 2022. GPS Determined Asymmetric Deformation across Central Altyn Tagh Fault Reveals Rheological Structure of Northern Tibet. Journal of Geophysical Research: Solid Earth, 127(9): e2022JB024216. https://doi.org/10.1029/2022JB024216 |
Ge, X. H. , Liu, Y. J. , Ren, S. M. , 2002. Uplift Dynamics of the Qinghai-Tibet Plateau and Altun Fault. Chinese Geology, 29(4): 346–350 (in Chinese with English Abstract) |
Gehrels, G. E. , Yin, A. , Wang, X. -F. , 2003. Detrital-Zircon Geochronology of the Northeastern Tibetan Plateau. Geological Society of America Bulletin, 115(7): 881–896.https://doi.org/10.1130/0016-7606(2003)1150881:dgotnt>2.0.co;2 doi: 10.1130/0016-7606(2003)1150881:dgotnt>2.0.co;2 |
Gold, R. D. , Cowgill, E. , Arrowsmith, J. R. , et al. , 2009. Riser Diachroneity, Lateral Erosion, and Uncertainty in Rates of Strike-Slip faulting: A Case Study from Tuzidun along the Altyn Tagh Fault, NW China. Journal of Geophysical Research: Solid Earth, 114(B4): B04401. https://doi.org/10.1029/2008JB005913 |
Gold, R. D. , Cowgill, E. , Arrowsmith, J. R. , et al. , 2011. Faulted Terrace Risers Place New Constraints on the Late Quaternary Slip Rate for the Central Altyn Tagh Fault, Northwest Tibet. GSA Bulletin, 123(5/6): 958–978. https://doi.org/10.1130/B30207.1 |
Guo, X. Y. , Gao, R. , Li, S. Z. , et al. , 2016. Lithospheric Architecture and Deformation of NE Tibet: New Insights on the Interplay of Regional Tectonic Processes. Earth and Planetary Science Letters, 449: 89–95. https://doi.org/10.1016/j.epsl.2016.05.045 |
Hack, J. T. , 1973. Stream-Profile Analysis and Stream-Gradient Index. Journal of Research of the U. S. Geological Survey, 1: 421–429 |
Harkins, N. W. , Anastasio, D. J. , Pazzaglia, F. J. , 2005. Tectonic Geomorphology of the Red Rock Fault, Insights into Segmentation and Landscape Evolution of a Developing Range Front Normal Fault. Journal of Structural Geology, 27(11): 1925–1939. https://doi.org/10.1016/j.jsg.2005.07.005 |
He, J. K. , Vernant, P. , Chéry, J. , et al. , 2013. Nailing down the Slip Rate of the Altyn Tagh Fault. Geophysical Research Letters, 40(20): 5382–5386. https://doi.org/10.1002/2013GL057497 |
Herquel, G. , Tapponnier, P. , Wittlinger, G. , et al. , 1999. Teleseismic Shear Wave Splitting and Lithospheric Anisotropy beneath and across the Altyn Tagh Fault. Geophysical Research Letters, 26(21): 3225–3228. https://doi.org/10.1029/1999GL005387 |
Hoek, E. , Brown, E. T. , 1997. Practical Estimates of Rock Mass Strength. International Journal of Rock Mechanics and Mining Sciences, 34(8): 1165–1186. https://doi.org/10.1016/S1365-1609(97)80069-X |
Huang, F. P. , Liang, M. J. , Zhang, H. P. , et al. , 2022. Along-Strike Topographic Variations of the Altyn Tagh Fault in the Northern Tibetan Plateau. Journal of Asian Earth Sciences, 227: 105082. https://doi.org/10.1016/j.jseaes.2022.105082 |
Jolivet, R. , Cattin, R. , Chamot-Rooke, N. , et al. , 2008. Thin-Plate Modeling of Interseismic Deformation and Asymmetry across the Altyn Tagh Fault Zone. Geophysical Research Letters, 35(2): L02309. https://doi.org/10.1029/2007GL031511 |
Keller, E. A. , Pinter, N. , 2002. Active Tectonics: Earthquakes, Uplift and Landscape. Prentice Hall, Upper Saddle River, NJ, USA. 121–154 |
Kirby, E. , Whipple, K. X. , 2001. Quantifying Differential Rock-Uplift Rates via Stream Profile Analysis. Geology, 29(5): 415–418.https://doi.org/10.1130/0091-7613(2001)029<0415:qdrurv>2.0.co;2 doi: 10.1130/0091-7613(2001)029<0415:qdrurv>2.0.co;2 |
Kirby, E. , Whipple, K. X. , 2012. Expression of Active Tectonics in Erosional Landscapes. Journal of Structural Geology, 44: 54–75. https://doi.org/10.1016/j.jsg.2012.07.009 |
Kirby, E. , Whipple, K. X. , Tang, W. Q. , et al. , 2003. Distribution of Active Rock Uplift along the Eastern Margin of the Tibetan Plateau: Inferences from Bedrock Channel Longitudinal Profiles. Journal of Geophysical Research: Solid Earth, 108(B4): 2217. https://doi.org/10.1029/2001JB000861 |
Li, C. Y. , Zhang, P. Z. , Yin, J. H. , et al. , 2009. Late Quaternary Left-Lateral Slip Rate of the Haiyuan Fault, Northeastern Margin of the Tibetan Plateau. Tectonics, 28(5): TC5010. https://doi.org/10.1029/2008TC002302 |
Li, Y. C. , Shan, X. J. , Qu, C. Y. , et al. , 2018. Crustal Deformation of the Altyn Tagh Fault Based on GPS. Journal of Geophysical Research: Solid Earth, 123(11): 10309–10322. https://doi.org/10.1029/2018JB015814 |
Liu, C. J. , Ji, L. Y. , Zhu, L. Y. , et al. , 2018. InSAR-Constrained Interseismic Deformation and Potential Seismogenic Asperities on the Altyn Tagh Fault at 91.5–95°E, Northern Tibetan Plateau. Remote Sensing, 10(6): 943. https://doi.org/10.3390/rs10060943 |
Liu, J. R. , Ren, Z. K. , Zheng, W. J. , et al. , 2020. Late Quaternary Slip Rate of the Aksay Segment and Its Rapidly Decreasing Gradient along the Altyn Tagh Fault. Geosphere, 16(6): 1538–1557. https://doi.org/10.1130/GES02250.1 |
Mériaux, A. S. , Ryerson, F. J. , Tapponnier, P. , et al. , 2004. Rapid Slip along the Central Altyn Tagh Fault: Morphochronologic Evidence from Cherchen He and Sulamu Tagh. Journal of Geophysical Research: Solid Earth, 109(B6): B0640. https://doi.org/10.1029/2003JB002558 |
Mériaux, A. S. , Tapponnier, P. , Ryerson, F. J. , et al. , 2005. The Aksay Segment of the Northern Altyn Tagh fault: Tectonic Geomorphology, Landscape Evolution, and Holocene Slip Rate. Journal of Geophysical Research: Solid Earth, 110(B4): 229–246. https://doi.org/10.1029/2004JB003210 |
Mériaux, A. S. , Van der Woerd, J. , Tapponnier, P. , et al. , 2012. The Pingding Segment of the Altyn Tagh Fault (91°E): Holocene Slip-Rate Determination from Cosmogenic Radionuclide Dating of Offset Fluvial Terraces. Journal of Geophysical Research: Solid Earth, 117(B9): B09406. https://doi.org/10.1029/2012JB009289 |
Meyer, B. , Tapponnier, P. , Gaudemer, Y. , et al. , 1996. Rate of Left-Lateral Movement along the Easternmost Segment of the Altyn Tagh Fault, East of 96°E (China). Geophysical Journal International, 124(1): 29–44. https://doi.org/10.1111/j.1365-246X.1996.tb06350.x |
Molnar, P. , Tapponnier, P. , 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science, 189(4201): 419–426. https://doi.org/10.1126/science.189.4201.419 |
Molnar, P. , Tapponnier, P. , 1978. Active Tectonics of Tibet. Journal of Geophysical Research, 83(B11): 5361–5375. https://doi.org/10.1029/JB083iB11p05361 |
Nadeu, E. , Quiñonero-Rubio, J. M. , de Vente, J. , et al. , 2015. The Influence of Catchment Morphology, Lithology and Land Use on Soil Organic Carbon Export in a Mediterranean Mountain Region. Catena, 126: 117–125. https://doi.org/10.1016/j.catena.2014.11.006 |
Neil, E. A. , Houseman, G. A. , 1997. Geodynamics of the Tarim Basin and the Tian Shan in Central Asia. Tectonics, 16(4): 571–584. https://doi.org/10.1029/97TC01413 |
Pedrera, A. , Pérez-Peña, J. V. , Galindo-Zaldívar, J. , et al. , 2009. Testing the Sensitivity of Geomorphic Indices in Areas of Low-Rate Active Folding (Eastern Betic Cordillera, Spain). Geomorphology, 105(3/4): 218–231. https://doi.org/10.1016/j.geomorph.2008.09.026 |
Peltzer, G. , Tapponnier, P. , 1988. Formation and Evolution of Strike-Slip Faults, Rifts, and Basins during the India-Asia Collision: An Experimental Approach. Journal of Geophysical Research: Solid Earth, 93(B12): 15085–15117. https://doi.org/10.1029/JB093iB12p15085 |
Peltzer, G. , Tapponnier, P. , Armijo, R. , 1989. Magnitude of Late Quaternary Left-Lateral Displacements along the North Edge of Tibet. Science, 246(4935): 1285–1289. https://doi.org/10.1126/science.246.4935.1285 |
Pérez-Peña, J. V. , Azañón, J. M. , Azor, A. , et al. , 2009. Spatial Analysis of Stream Power Using GIS: SLk Anomaly Maps. Earth Surface Processes and Landforms, 34(1): 16–25. https://doi.org/10.1002/esp.1684 |
Ritts, B. D. , Biffi, U. , 2000. Magnitude of Post-Middle Jurassic (Bajocian) Displacement on the Central Altyn Tagh Fault System, Northwest China. Geological Society of America Bulletin, 112(1): 61–74.https://doi.org/10.1130/0016-7606(2000)112<61:mopjbd>2.0.co;2 doi: 10.1130/0016-7606(2000)112<61:mopjbd>2.0.co;2 |
Schwanghart, W. , Kuhn, N. J. , 2010. TopoToolbox: A Set of Matlab Functions for Topographic Analysis. Environmental Modelling & Software, 25(6): 770–781. https://doi.org/10.1016/j.envsoft.2009.12.002 |
Schwanghart, W. , Scherler, D. , 2014. Short Communication: TopoToolbox 2—MATLAB-Based Software for Topographic Analysis and Modeling in Earth Surface Sciences. Earth Surface Dynamics, 2(1): 1–7. https://doi.org/10.5194/esurf-2-1-2014 |
Shen, Z. K. , Wang, M. , Li, Y. X. , et al. , 2001. Crustal Deformation along the Altyn Tagh Fault System, Western China, from GPS. Journal of Geophysical Research: Solid Earth, 106(B12): 30607–30621. https://doi.org/10.1029/2001JB000349 |
Snyder, N. P. , Whipple, K. X. , Tucker, G. E. , et al. , 2000. Landscape Response to Tectonic forcing: Digital Elevation Model Analysis of Stream Profiles in the Mendocino Triple Junction Region, Northern California. GSA Bulletin, 112(8): 1250–1263.https://doi.org/10.1130/0016-7606(2000)112<1250:LRTTFD>2.0.CO;2 doi: 10.1130/0016-7606(2000)112<1250:LRTTFD>2.0.CO;2 |
Sobel, E. R. , Arnaud, N. , Jolivet, M. , et al. , 2001. Jurassic to Cenozoic Exhumation History of the Altyn Tagh Range, Northwest China, Constrained by 40Ar/39Ar and Apatite Fission Track Thermochronology. In: Hendrix, M. S. , Davis, G. A. , eds. , Paleozoic and Mesozoic Tectonic Evolution of Central Asia: From Continental Assembly to Intracontinental Deformation. Geological Society of America, Boulder, Colorado. 247–267 |
Strahler, A. N. , 1952. Hypsometric (Area-Altitude) Analysis of Erosional Topography. GSA Bulletin, 63(11): 1117–1142.https://doi.org/10.1130/0016-7606(1952)63<1117:HAAOET)2.0.CO;2 doi: 10.1130/0016-7606(1952)63<1117:HAAOET)2.0.CO;2 |
Tao, Y. L. , Xiong, J. G. , Zhang, H. P. , et al. , 2020. Climate-Driven Formation of Fluvial Terraces across the Tibetan Plateau since 200 ka: A Review. Quaternary Science Reviews, 237: 106303. https://doi.org/10.1016/j.quascirev.2020.106303 |
Tapponnier, P. , Molnar, P. , 1977. Active Faulting and Tectonics in China. Journal of Geophysical Research (1896–1977), 82(20): 2905–2930. https://doi.org/10.1029/JB082i020p02905 |
Tapponnier, P. , Van der Woerd, J. , Ryerson, F. J. , et al. , 2005. Late Quaternary Sinistral Slip Rate along the Altyn Tagh Fault and Its Structural Transformation Model. Science in China (Series D: Earth Sciences), 48(3): 384–397 |
Tapponnier, P. , Xu, Z. Q. , Roger, F. , et al. , 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671–1677. https://doi.org/10.1126/science.105978 |
Van der Woerd, J. , Tapponnier, P. , Ryerson, F. J. , et al. , 2002. Uniform Postglacial Slip-Rate along the Central 600 km of the Kunlun Fault (Tibet), from 26Al, 10Be, and 14C Dating of Riser Offsets, and Climatic Origin of the Regional Morphology. Geophysical Journal International, 148(3): 356–388. https://doi.org/10.1046/j.1365-246x.2002.01556.x |
Van der Woerd, J. , Xu, X. W. , Li, H. B. , et al. , 2001. Rapid Active Thrusting along the Northwestern Range Front of the Tanghe Nan Shan (Western Gansu, China). Journal of Geophysical Research: Solid Earth, 106(B12): 30475–30504. https://doi.org/10.1029/2001JB000583 |
Wallace, K. , Yin, G. H. , Bilham, R. , 2004. Inescapable Slow Slip on the Altyn Tagh Fault. Geophysical Research Letters, 31(9): L09613. https://doi.org/10.1029/2004GL019724 |
Wang, E. , Burchfiel, B. C. , 1997. Interpretation of Cenozoic Tectonics in the Right-Lateral Accommodation Zone between the Ailao Shan Shear Zone and the Eastern Himalayan Syntaxis. International Geology Review, 39(3): 191–219. https://doi.org/10.1080/00206819709465267 |
Wang, F. , Xu, X. W. , Zheng, R. Z. , 2003. Slip-Rate on the Eastern Altyn Tagh Fault Since 20 ka BP. Seismology and Geology, 25(3): 349–358 (in Chinese with English Abstract) |
Wang, F. , Xu, X. W. , Zheng, R. Z. , 2004. Study on Holocene Strike-Slip Rates of the Middle Altyn Tagh Fault by Terraces Offset Measurement. Seismology and Geology, 26(1): 61–70 (in Chinese with English Abstract) |
Wang, J. , Hu, Z. B. , Pan, B. T. , et al. , 2019. Spatial Distribution Pattern of Channel Steepness Index as Evidence for Differential Rock Uplift along the Eastern Altun Shan on the Northern Tibetan Plateau. Global and Planetary Change, 181: 102979. https://doi.org/10.1016/j.gloplacha.2019.102979 |
Wang, M. , Shen, Z. K. , 2020. Present-Day Crustal Deformation of Continental China Derived from GPS and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774. https://doi.org/10.1029/2019JB018774 |
Weissel, J. K. , Pratson, L. F. , Malinverno, A. , 1994. The Length-Scaling Properties of Topography. Journal of Geophysical Research: Solid Earth, 99(B7): 13997–14012. https://doi.org/10.1029/94JB00130 |
Whipple, K. X. , 2001. Fluvial Landscape Response Time: How Plausible Is Steady-State Denudation? American Journal of Science, 301(4/5): 313–325. https://doi.org/10.2475/ajs.301.4-5.313 |
Whipple, K. X. , 2004. Bedrock Rivers and the Geomorphology of Active Orogens. Annual Review of Earth and Planetary Sciences, 32: 151–185. https://doi.org/10.1146/annurev.earth.32.101802.120356 |
Wittlinger, G. , Tapponnier, P. , Poupinet, G. , et al. , 1998. Tomographic Evidence for Localized Lithospheric Shear along the Altyn Tagh Fault. Science, 282(5386): 74–76. https://doi.org/10.1126/science.282.5386.74[PubMed] |
Wobus, C. , Whipple, K. X. , Kirby, E. , et al. , 2006. Tectonics from Topography: Procedures, Promise, and Pitfalls. In: Willett, S. D. , ed. , Tectonics, Climate, and Landscape Evolution. Special Paper of the Geological Society of America, 398: 55–74. |
Wu, L. , Xiao, A. C. , Wang, L. Q. , et al. , 2012. EW-Trending Uplifts along the Southern Side of the Central Segment of the Altyn Tagh Fault, NW China: Insight into the Rising Mechanism of the Altyn Mountain during the Cenozoic. Science China Earth Sciences, 55(6): 926–939. https://doi.org/10.1007/s11430-012-4402-7 |
Wu, Y. Q. , Zheng, Z. J. , Nie, J. L. , et al. , 2022. High-Precision Vertical Movement and Three-Dimensional Deformation Pattern of the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 127(4): e2021JB023202. https://doi.org/10.1029/2021JB023202 |
Xiang, H. F. , Guo, S. M. , Zhang, W. X. , et al. , 2000. River Offset and Slip Rate of the East Segment of Altun Tagh Fault Zone since Quaternary. Seismology and Geology, 22(2): 129–138 (in Chinese with English Abstract) |
Ye, Y. H. , Wu, L. , Wang, Y. P. , et al. , 2022. Late Quaternary Active Tectonics of the North Altyn Fault. Seismology and Geology, 44(2): 297–312. https://doi.org/10.3969/j.issn.0253-4967.2022.02.002 (in Chinese with English Abstract) |
Yin, A. , Dang, Y. Q. , Zhang, M. , et al. , 2007. Cenozoic Tectonic Evolution of Qaidam Basin and Its Surrounding Regions (Part 2): Wedge Tectonics in Southern Qaidam Basin and the Eastern Kunlun Range. Special Paper of the Geological Society of America, 433: 369–390. https://doi.org/10.1130/2007.2433(18) |
Yin, A. , Dang, Y. Q. , Zhang, M. , et al. , 2008. Cenozoic Tectonic Evolution of the Qaidam Basin and Its Surrounding Regions (Part 3): Structural Geology, Sedimentation, and Regional Tectonic Reconstruction. GSA Bulletin, 120(7/8): 847–876. https://doi.org/10.1130/B26232.1 |
Yin, A. , Rumelhart, P. , Butler, R. , et al. , 2002. Tectonic History of the Altyn Tagh Fault System in Northern Tibet Inferred from Cenozoic Sedimentation. Geological Society of America Bulletin, 114(10): 1257–1295.https://doi.org/10.1130/0016-7606(2002)114<1257:thotat>2.0.co;2 doi: 10.1130/0016-7606(2002)114<1257:thotat>2.0.co;2 |
Yuan, S. H. , Liu, Y. J. , Ge, X. H. , et al. , 2006. Advance in Study of Mesozoic-Cenozoic Uplift History of the Altyn Mountains. Global Geology, 25(2): 164–171 (in Chinese with English Abstract) |
Yue, Y. J. , Ritts, B. D. , Graham, S. A. , et al. , 2004. Slowing Extrusion Tectonics: lowered Estimate of Post-Early Miocene Slip Rate for the Altyn Tagh Fault. Earth and Planetary Science Letters, 217(1/2): 111–122. https://doi.org/10.1016/S0012-821X(03)00544-2 |
Yue, Y. , Ritts, B. D. , Graham, S. A. , 2001. Initiation and Long-Term Slip History of the Altyn Tagh Fault. International Geology Review, 43(12): 1087–1093. https://doi.org/10.1080/00206810109465062 |
Yun, L. , Zhang, J. , Wang, J. , et al. , 2020. Active Deformation to the North of the Altyn Tagh Fault: Constraints on the Northward Growth of the Northern Tibetan Plateau. Journal of Asian Earth Sciences, 198: 104312. https://doi.org/10.1016/j.jseaes.2020.104312 |
Zhang, P. Z. , Molnar, P. , Xu, X. W. , 2007. Late Quaternary and Present-Day Rates of Slip along the Altyn Tagh Fault, Northern Margin of the Tibetan Plateau. Tectonics, 26(5): TC5010. https://doi.org/10.1029/2006TC002014 |
Zhao, J. , Mooney, W. D. , Zhang, X. K. , et al. , 2006. Crustal Structure across the Altyn Tagh Range at the Northern Margin of the Tibetan Plateau and Tectonic Implications. Earth and Planetary Science Letters, 241(3/4): 804–814. https://doi.org/10.1016/j.epsl.2005.11.003 |
Zheng, G. , Wang, H. , Wright, T. J. , et al. , 2017. Crustal Deformation in the India-Eurasia Collision Zone from 25 Years of GPS Measurements. Journal of Geophysical Research: Solid Earth, 122(11): 9290–9312. https://doi.org/10.1002/2017JB014465 |