Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 4
Aug 2025
Turn off MathJax
Article Contents
Xu Lin, Yuxuan Pang, Chang'an Li, Jing Liu-Zeng, Marc Jolivet, Haijin Liu, Chengwei Hu, Xiaokang Chen. Detrital Zircon U-Pb Age Analysis of Late Pliocene Deposits from the Lower Yangtze River, South China: Implications for Sedimentary Provenance and Evolution of the Yangtze River. Journal of Earth Science, 2025, 36(4): 1425-1443. doi: 10.1007/s12583-023-1961-9
Citation: Xu Lin, Yuxuan Pang, Chang'an Li, Jing Liu-Zeng, Marc Jolivet, Haijin Liu, Chengwei Hu, Xiaokang Chen. Detrital Zircon U-Pb Age Analysis of Late Pliocene Deposits from the Lower Yangtze River, South China: Implications for Sedimentary Provenance and Evolution of the Yangtze River. Journal of Earth Science, 2025, 36(4): 1425-1443. doi: 10.1007/s12583-023-1961-9

Detrital Zircon U-Pb Age Analysis of Late Pliocene Deposits from the Lower Yangtze River, South China: Implications for Sedimentary Provenance and Evolution of the Yangtze River

doi: 10.1007/s12583-023-1961-9
More Information
  • Corresponding author: Jing Liu-Zeng, liu_zeng@tju.edu.cn
  • Received Date: 28 Dec 2022
  • Accepted Date: 19 Dec 2023
  • Issue Publish Date: 30 Aug 2025
  • The Yangtze River, with a length of approximately 6 300 km, holds the distinction of being the largest river in East Asia that empties into the Pacific Ocean. Its formation is intricately linked to regional tectonic activity and climate fluctuations. However, the exact timeline for the formation of the Yangtze River remains elusive. This study investigates the provenance of the Late Cenozoic strata in the Wangjiang Basin, situated in the Lower Yangtze River, through the application of detrital zircon U-Pb dating. Seven sand samples were analyzed, leading to the identification of new U-Pb detrital zircon ages (n = 577). Our study reveals that the sand materials found in the Pliocene gravel beds of the Anqing Formation originate predominantly from the Yangtze River. The findings of our study, along with the provenance tracing of boreholes in the Yangtze River Basin and the shelf sea in East China, provide compelling evidence for the continuous presence of the Yangtze River throughout the Pliocene period. The development of the Yangtze River during the Pliocene is intricately connected to both the tectonic adjustments occurring at the southeastern margin of the Tibetan Plateau and the intensification of the Asian Monsoon.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • An, Z. S., 2000. The History and Variability of the East Asian Paleomonsoon Climate. Quaternary Science Reviews, 19(1/2/3/4/5): 171–187. https://doi.org/10.1016/S0277-3791(99)00060-8
    An, Z. S., Kutzbach, J. E., Prell, W. L., et al., 2001. Evolution of Asian Monsoons and Phased Uplift of the Himalaya–Tibetan Plateau since Late Miocene Times. Nature, 411(6833): 62–66. https://doi.org/10.1038/35075035
    Bentley, S. J., Blum, M. D., Maloney, J., et al., 2016. The Mississippi River Source-to-Sink System: Perspectives on Tectonic, Climatic, and Anthropogenic Influences, Miocene to Anthropocene. Earth-Science Reviews, 153: 139–174. https://doi.org/10.1016/j.earscirev.2015.11.001
    Burbank, D. W., Anderson, R. S., 2013. Tectonic Geomorphology. Environmental & Engineering Geoscience, 19(2): 198–200. https://doi.org/10.2113/gseegeosci.19.2.198
    Cai, M. J., Xu, Z. K., Clift, P. D., et al., 2020. Long-Term History of Sediment Inputs to the Eastern Arabian Sea and Its Implications for the Evolution of the Indian Summer Monsoon since 3.7 Ma. Geological Magazine, 157(6): 908–919. https://doi.org/10.1017/s0016756818000857
    Chen, J., Wang, Z. H., Chen, Z. Y., et al., 2009. Diagnostic Heavy Minerals in Plio-Pleistocene Sediments of the Yangtze Coast, China with Special Reference to the Yangtze River Connection into the Sea. Geomorphology, 113(3/4): 129–136. https://doi.org/10.1016/j.geomorph.2009.03.010
    Chen, Y., Yan, M. D., Fang, X. M., et al., 2017. Detrital Zircon U-Pb Geochronological and Sedimentological Study of the Simao Basin, Yunnan: Implications for the Early Cenozoic Evolution of the Red River. Earth and Planetary Science Letters, 476: 22–33. https://doi.org/10.1016/j.epsl.2017.07.025
    Cheng, Y., Li, X. Q., Zhao, Z. Y., et al., 2018. Detrital Zircon U-Pb Ages and Its Provenance Significance in the TZK3 Core from the Yangtze River Delta. Journal of Geomechanics, 24(5): 635–644. https://doi.org/10.12090/j.issn.1006-6616.2018.24.05.064(in Chinese with English Abstract)
    Choi, T., Lee, Y. I., Orihashi, Y., et al., 2013. The Provenance of the Southeastern Yellow Sea Sediments Constrained by Detrital Zircon U-Pb Age. Marine Geology, 337: 182–194. https://doi.org/10.1016/j.margeo.2013.01.007
    Clark, M. K., Schoenbohm, L. M., Royden, L. H., et al., 2004. Surface Uplift, Tectonics, and Erosion of Eastern Tibet from Large-Scale Drainage Patterns. Tectonics, 23(1): TC1006. https://doi.org/10.1029/2002tc001402
    Clift, P. D., Hodges, K. V., Heslop, D., et al., 2008a. Correlation of Himalayan Exhumation Rates and Asian Monsoon Intensity. Nature Geoscience, 1(12): 875–880. https://doi.org/10.1038/ngeo351
    Clift, P. D., van Long, H., Hinton, R., et al., 2008b. Evolving East Asian River Systems Reconstructed by Trace Element and Pb and Nd Isotope Variations in Modern and Ancient Red River-Song Hong Sediments. Geochemistry, Geophysics, Geosystems, 9(4): Q04039. https://doi.org/10.1029/2007GC001867
    Clift, P. D., Layne, G. D., Blusztajn, J., 2004. Marine Sedimentary Evidence for Monsoon Strengthening, Tibetan Uplift and Drainage Evolution in East Asia. In: Clift, P., Kuhnt, W., Wang, P., et al., eds., Continent-Ocean Interactions within East Asian Marginal Seas. American Geophysical Union, Washington, D. C. 255–282. https://doi.org/10.1029/149gm14
    Craddock, W. H., Kylander-Clark, A. R. C., 2013. U-Pb Ages of Detrital Zircons from the Tertiary Mississippi River Delta in Central Louisiana: Insights into Sediment Provenance. Geosphere, 9(6): 1832–1851. https://doi.org/10.1130/ges00917.1
    Deng, B., Chew, D., Mark, C., et al., 2021. Late Cenozoic Drainage Reorganization of the Paleo-Yangtze River Constrained by Multi-Proxy Provenance Analysis of the Paleo-Lake Xigeda. GSA Bulletin, 133(1/2): 199–211. https://doi.org/10.1130/b35579.1
    Dickinson, W. R., Gehrels, G. E., 2003. U-Pb Ages of Detrital Zircons from Permian and Jurassic Eolian Sandstones of the Colorado Plateau, USA: Paleogeographic Implications. Sedimentary Geology, 163(1/2): 29–66. https://doi.org/10.1016/S0037-0738(03)00158-1
    Fan, D. D., Li, C. X., Yokoyama, K., et al., 2005. Monazite Age Spectra in the Late Cenozoic Strata of the Changjiang Delta and Its Implication on the Changjiang Run-through Time. Science in China Series D: Earth Sciences, 48(10): 1718–1727. https://doi.org/10.1360/01yd0447
    Feng, Y., Song, C. H., He, P. J., et al., 2021. Detrital Zircon U-Pb Geochronology of the Jianchuan Basin, Southeastern Tibetan Plateau, and Its Implications for Tectonic and Paleodrainage Evolution. Terra Nova, 33(6): 560–572. https://doi.org/10.1111/ter.12548
    Fu, X. W., Zhu, W. L., Geng, J. H., et al., 2021. The Present-Day Yangtze River Was Established in the Late Miocene: Evidence from Detrital Zircon Ages. Journal of Asian Earth Sciences, 205: 104600. https://doi.org/10.1016/j.jseaes.2020.104600
    Gehrels, G., 2014. Detrital Zircon U-Pb Geochronology Applied to Tectonics. Annual Review of Earth and Planetary Sciences, 42: 127–149. https://doi.org/10.1146/annurev-earth-050212-124012
    Godard, V., Pik, R., Lavé, J., et al., 2009. Late Cenozoic Evolution of the Central Longmen Shan, Eastern Tibet: Insight from (U-Th)/He Thermochronometry. Tectonics, 28(5): TC5009. https://doi.org/10.1029/2008tc002407
    Guo, B. H., Liu, S. P., Peng, T. J., et al., 2018. Late Pliocene Establishment of Exorheic Drainage in the Northeastern Tibetan Plateau as Evidenced by the Wuquan Formation in the Lanzhou Basin. Geomorphology, 303: 271–283. https://doi.org/10.1016/j.geomorph.2017.12.009
    Guo, Z. T., Ruddiman, W. F., Hao, Q. Z., et al., 2002. Onset of Asian Desertification by 22 Myr ago Inferred from Loess Deposits in China. Nature, 416(6877): 159–163. https://doi.org/10.1038/416159a
    Han, Z. Y., Li, X. S., Chen, Y. Y., et al., 2009. Evolution of Sedimentary Environment of Neogene Gravel Beds near Nanjing. Quaternary Sciences, 29(2): 361–369 (in Chinese with English Abstract)
    Hao, S. F., Cheng, Y., Gao, B. F., et al., 2023. Provenance Changes of the Yangtze River Delta Sediments since ∼3.6 Ma: Evidence from Heavy Mineral Assemblages and Detrital Zircon U-Pb Ages Spectra. Quaternary International, 671: 33–43. https://doi.org/10.1016/j.quaint.2023.09.019
    He, M. Y., Zheng, H. B., Clift, P. D., 2013. Zircon U-Pb Geochronology and Hf Isotope Data from the Yangtze River Sands: Implications for Major Magmatic Events and Crustal Evolution in Central China. Chemical Geology, 360: 186–203. https://doi.org/10.1016/j.chemgeo.2013.10.020
    He, M. Y., Zheng, H. B., Clift, P. D., et al., 2021. Paleogene Sedimentary Records of the Paleo-Jinshajiang (Upper Yangtze) in the Jianchuan Basin, Yunnan, SW China. Geochemistry, Geophysics, Geosystems, 22(6): e2020GC009500. https://doi.org/10.1029/2020GC009500
    He, P., 1994. Quaternary Sedimentary Facies and Environmental Evolution of the Mainstream of the Yangtze River. Seismological Press, Beijing. 1–69 (in Chinese)
    Hu, Z. B., Pan, B. T., Bridgland, D., et al., 2017. The Linking of the Upper-Middle and Lower Reaches of the Yellow River as a Result of Fluvial Entrenchment. Quaternary Science Reviews, 166: 324–338. https://doi.org/10.1016/j.quascirev.2017.02.026
    Huang, X. T., Mei, X., Yang, S. Y., et al., 2021. Disentangling Combined Effects of Sediment Sorting, Provenance, and Chemical Weathering from a Pliocene-Pleistocene Sedimentary Core (CSDP-1) in the South Yellow Sea. Geochemistry, Geophysics, Geosystems, 22(5): e2020GC009569. https://doi.org/10.1029/2020GC009569
    Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in situ U-Pb Zircon Geochronology. Chemical Geology, 211(1/2): 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017
    Jia, J. T., Zheng, H. B., Huang, X. T., et al., 2010. Detrital Zircon U-Pb Ages of Late Cenozoic Sediments from the Yangtze Delta: Implication for the Evolution of the Yangtze River. Chinese Science Bulletin, 55(15): 1520–1528. https://doi.org/10.1007/s11434-010-3091-x
    Jiao, R. H., Yang, R., Yuan, X. P., 2021. Incision History of the Three Gorges, Yangtze River Constrained from Inversion of River Profiles and Low-Temperature Thermochronological Data. Journal of Geophysical Research: Earth Surface, 126(3): 2020JF005767. https://doi.org/10.1029/2020JF005767
    Jolivet, M., Braucher, R., Dovchintseren, D., et al., 2021. Erosion around a Large-Scale Topographic High in a Semi-Arid Sedimentary Basin: Interactions between Fluvial Erosion, Aeolian Erosion and Aeolian Transport. Geomorphology, 386: 107747. https://doi.org/10.1016/j.geomorph.2021.107747
    Kang, C. G., Li, C. A., Wei, C. Y., et al., 2021. Heavy Mineral Assemblage Variation in Late Cenozoic Sediments from the Middle Yangtze River Basin: Insights into Basin Sediment Provenance and Evolution of the Three Gorges Valley. Minerals, 11(10): 1056. https://doi.org/10.3390/min11101056
    Kirby, E., Reiners, P. W., Krol, M. A., et al., 2002. Late Cenozoic Evolution of the Eastern Margin of the Tibetan Plateau: Inferences from 40Ar/39Ar and (U-Th)/He Thermochronology. Tectonics, 21(1): 1-1-1-20. https://doi.org/10.1029/2000tc001246
    Kong, P., Granger, D. E., Wu, F. Y., et al., 2009. Cosmogenic Nuclide Burial Ages and Provenance of the Xigeda Paleo-Lake: Implications for Evolution of the Middle Yangtze River. Earth and Planetary Science Letters, 278(1/2): 131–141. https://doi.org/10.1016/j.epsl.2008.12.003
    Kong, P., Zheng, Y., Caffee, M. W., 2012. Provenance and Time Constraints on the Formation of the First Bend of the Yangtze River. Geochemistry, Geophysics, Geosystems, 13(6): Q06017. https://doi.org/10.1029/2012GC004140
    Kukla, G., Cílek, V., 1996. Plio-Pleistocene Megacycles: Record of Climate and Tectonics. Palaeogeography, Palaeoclimatology, Palaeoecology, 120(1/2): 171–194. https://doi.org/10.1016/0031-0182(95)00040-2
    Latrubesse, E. M., Cozzuol, M., da Silva-Caminha, S. A. F., et al., 2010. The Late Miocene Paleogeography of the Amazon Basin and the Evolution of the Amazon River System. Earth-Science Reviews, 99(3/4): 99–124. https://doi.org/10.1016/j.earscirev.2010.02.005
    Leier, A. L., DeCelles, P. G., Pelletier, J. D., 2005. Mountains, Monsoons, and Megafans. Geology, 33(4): 289–292. https://doi.org/10.1130/g21228.1
    Li, F. L., Yang, S. Y., Breecker, D. O., et al., 2022. Responses of Silicate Weathering Intensity to the Pliocene-Quaternary Cooling in East and Southeast Asia. Earth and Planetary Science Letters, 578: 117301. https://doi.org/10.1016/j.epsl.2021.117301
    Li, J. H., Dong, S. W., Zhang, Y. Q., et al., 2016. New Insights into Phanerozoic Tectonics of South China: Part 1, Polyphase Deformation in the Jiuling and Lianyunshan Domains of the Central Jiangnan Orogen. Journal of Geophysical Research: Solid Earth, 121(4): 3048–3080. https://doi.org/10.1002/2015JB012778
    Li, J. J., Fang, X. M., Song, C. H., et al., 2014. Late Miocene–Quaternary Rapid Stepwise Uplift of the NE Tibetan Plateau and Its Effects on Climatic and Environmental Changes. Quaternary Research, 81(3): 400–423. https://doi.org/10.1016/j.yqres.2014.01.002
    Li, J. J., Xie, S. Y., Kuang, M. S., 2001. Geomorphic Evolution of the Yangtze Gorges and the Time of Their Formation. Geomorphology, 41(2/3): 125–135. https://doi.org/10.1016/S0169-555X(01)00110-6
    Li, J., Yang, S. X., Liu, J., et al., 2024. Pollen Evidence of Enhanced Yellow River Provenance into the South Yellow Sea after the Middle Pleistocene Transition. Quaternary Science Reviews, 344: 108961. https://doi.org/10.1016/j.quascirev.2024.108961
    Li, W. T., Jiang, S. Y., Fu, B., et al., 2021. Zircon HfO Isotope and Magma Oxidation State Evidence for the Origin of Early Cretaceous Granitoids and Porphyry Mo Mineralization in the Tongbai-Hong'an-Dabie Orogens, Eastern China. Lithos, 398: 106281. https://doi.org/10.1016/j.lithos.2021.106281
    Li, X. C., Wang, A. D., Wan, J. J., et al., 2016. Tracing the Stream Sediment of the Ganjiang River(Nanchang Section): Constraint from the Detrital Zircon U-Pb Isotope Evidence. Geoscience, 30(3): 514–527. https://doi.org/10.3969/j.issn.1000-8527.2016.03.003 (in Chinese with English Abstract)
    Li, Y. W., Zhao, J. X., Li, C. A., et al., 2021. Cadmium and Clay Mineral Analysis of Late Pliocene–Pleistocene Deposits from Jianghan Basin, Central China: Implications for Sedimentary Provenance and Evolution of the Yangtze River. Quaternary International, 598(10): 1–14. https://doi.org/10.1016/j.quaint.2021.04.009
    Li, Y., Cao, S. Y., Zhou, R. J., et al., 2005. Late Cenozoic Minjiang Incision Rate and Its Constraint on the Uplift of the Eastern Margin of the Tibetan Plateau. Acta Geologica Sinica, 79(1): 28–37 (in Chinese with English Abstract)
    Li, Z. Y., Zhang, K., Liang, H., et al., 2022. Large River Chronology along the Jinshaan Gorge on the Yellow River and Its Implications for Initialization. Geomorphology, 400: 108092. https://doi.org/10.1016/j.geomorph.2021.108092
    Liang, Z. W., Gao, S., Hawkesworth, C. J., et al., 2018. Step-Like Growth of the Continental Crust in South China: Evidence from Detrital Zircons in Yangtze River Sediments. Lithos, 320: 155–171. https://doi.org/10.1016/j.lithos.2018.09.011
    Lin, W., Faure, M., Monié, P., et al., 2000. Tectonics of SE China: New Insights from the Lushan Massif (Jiangxi Province). Tectonics, 19(5): 852–871. https://doi.org/10.1029/2000TC900009
    Lin, X., Dröllner, M., Barham, M., et al., 2025. The Cenozoic Evolution of the Yellow River. Earth-Science Reviews, 261: 104997. https://doi.org/10.1016/j.earscirev.2024.104997
    Lin, X., Li, L., Liu, H., et al., 2022a. Sediments from the Upper Reaches of Yellow River did not Enter into Shanxi-Shaanxi Gorge in the Neogene. Journal of Palaeogeography, 24(3): 568–582. https://doi.org/10.7605/gdlxb.2022.03.036 (in Chinese with English Abstract)
    Lin, X., Liu, H., Liu, J., et al., 2022b. The Yellow River did not Enter the Bohai Bay Basin during the Miocene: Constraints from Detrital Zircon U-Pb Ages. Acta Geologica Sinica, 96(7): 2506–2518. https://doi.org/10.19762/j.cnki.dizhixuebao.2022004 (in Chinese with English Abstract)
    Lin, X., Wu, Z. H., Zhao, X. T., et al., 2022c. Detrital Zircon U-Pb Age Characteristics of Main Rivers around Jianghan Basin and Implications of Provenance Tracing. Acta Geoscientica Sinica, 43(1): 73–81. https://doi.org/10.3975/cagsb.2021.091701 (in Chinese with English Abstract)
    Lin, X., Liu, J., Liu, W., et al. 2023a. Development and Evolution of the Yellow River and the Yangtze River. Geological Publishing House, Beijing. 1–175 (in Chinse)
    Lin, X., Liu-Zeng, J., Wu, L., et al., 2023b. Meso-Cenozoic Exhumation in the South Qinling Shan (Central China) Recorded by Detrital Apatite Fission-Track Dating of Modern River Sediments. Minerals, 13(10): 1314. https://doi.org/10.3390/min13101314
    Lin, X., Li, L. L., Liu, J., et al., 2023c. Yangtze River Contributed Detrital Materials to Jianghan Basin during Early Pleistocene: Constraints from Detrital Zircon U-Pb Ages. Earth Science, 48(11): 4214–4228. https://doi.org/10.3799/dqkx.2022.018 (in Chinese with English Abstract)
    Lin, X., Liu-Zeng, J., Jolivet, M., et al., 2024a. Sedimentary Provenance Constraints on the Cretaceous to Cenozoic Palaeogeography of the Western Margin of the Jianghan Basin, South China. Gondwana Research, 125: 343–358. https://doi.org/10.1016/j.gr.2023.09.001
    Lin, X., Xu, Q. M., Barham, M., et al., 2024b. Tracing the Source Areas of Detrital Zircon and K-Feldspar in the Yellow River Basin. Earth-Science Reviews, 251: 104718. https://doi.org/10.1016/j.earscirev.2024.104718
    Liu, D. Y., Nutman, A. P., Compston, W., et al., 1992. Remnants of ≥ 3800 Ma Crust in the Chinese Part of the Sino-Korean Craton. Geology, 20(4): 339–342. https://doi.org/10.1130/0091-7613(1992)020<0339:romcit>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0339:romcit>2.3.co;2
    Liu, F. L., Gao, H. S., Pan, B. T., et al., 2019. Quantitative Analysis of Planation Surfaces of the Upper Yangtze River in the Sichuan-Yunnan Region, Southwest China. Frontiers of Earth Science, 13(1): 55–74. https://doi.org/10.1007/s11707-018-0707-y
    Liu, J. X., Liu, Q. S., Zhang, X. H., et al., 2016. Magnetostratigraphy of a Long Quaternary Sediment Core in the South Yellow Sea. Quaternary Science Reviews, 144: 1–15. https://doi.org/10.1016/j.quascirev.2016.05.025
    Liu, W. M., Hu, K. H., Carling, P. A., et al., 2018. The Establishment and Influence of Baimakou Paleo-Dam in an Upstream Reach of the Yangtze River, Southeastern Margin of the Tibetan Plateau. Geomorphology, 321: 167–173. https://doi.org/10.1016/j.geomorph.2018.08.028
    Liu, X. B., Chen, J., Maher, B. A., et al., 2018. Connection of the Proto-Yangtze River to the East China Sea Traced by Sediment Magnetic Properties. Geomorphology, 303: 162–171. https://doi.org/10.1016/j.geomorph.2017.11.023
    Liu-Zeng, J., Tapponnier, P., Gaudemer, Y., et al., 2008. Quantifying Landscape Differences across the Tibetan Plateau: Implications for Topographic Relief Evolution. Journal of Geophysical Research: Earth Surface, 113(F4): F04018. https://doi.org/10.1029/2007jf000897
    Ludwig, K. R., 2003. User's Manual for Isoplot/Ex Version 3.00, a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publications, Berkeley. 72
    Mapes, R. W., 2009. Past and Present Provenance of the Amazon River: [Dissertation]. The University of North Carolina, Chapel Hill. 1–177. https://www.proquest.com/openview/74bbd55dc2c132c09f076768e97c2da4/1?pq-origsite=gscholar&cbl=18750
    McPhillips, D., Hoke, G. D., Liu-Zeng, J., et al., 2016. Dating the Incision of the Yangtze River Gorge at the First Bend Using Three-Nuclide Burial Ages. Geophysical Research Letters, 43(1): 101–110. https://doi.org/10.1002/2015GL066780
    Métivier, F., Gaudemer, Y., Tapponnier, P., et al., 1999. Mass Accumulation Rates in Asia during the Cenozoic. Geophysical Journal International, 137(2): 280–318. https://doi.org/10.1046/j.1365-246X.1999.00802.x
    Molnar, P., 2005. Mio-Pliocene Growth of the Tibetan Plateau and Evolution of East Asian Climate. Palaeontologia Electronica, 8(1): 1–23
    Morag, N., Avigad, D., Gerdes, A., et al., 2021. Detrital Zircon and Rutile U-Pb, Hf Isotopes and Heavy Mineral Assemblages of Israeli Miocene Sands: Fingerprinting the Arabian Provenance of the Levant. Basin Research, 33(3): 1967–1984. https://doi.org/10.1111/bre.12544
    Nie, J. S., Stevens, T., Rittner, M., et al., 2015. Loess Plateau Storage of Northeastern Tibetan Plateau-Derived Yellow River Sediment. Nature Communications, 6(1): 1–10. https://doi.org/10.1038/ncomms9511
    Pan, B. T., Hu, Z. B., Wang, J. P., et al., 2011. A Magnetostratigraphic Record of Landscape Development in the Eastern Ordos Plateau, China: Transition from Late Miocene and Early Pliocene Stacked Sedimentation to Late Pliocene and Quaternary Uplift and Incision by the Yellow River. Geomorphology, 125(1): 225–238. https://doi.org/10.1016/j.geomorph.2010.09.019
    Paton, C., Woodhead, J. D., Hellstrom, J. C., et al., 2010. Improved Laser Ablation U-Pb Zircon Geochronology through Robust Downhole Fractionation Correction. Geochemistry, Geophysics, Geosystems, 11(3): Q0AA06. https://doi.org/10.1029/2009GC002618
    Popov, S. V., Shcherba, I. G., Ilyina, L. B., et al., 2006. Late Miocene to Pliocene Palaeogeography of the Paratethys and Its Relation to the Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology, 238(1/2/3/4): 91–106. https://doi.org/10.1016/j.palaeo.2006.03.020
    Potter, P. E., 1978. Significance and Origin of Big Rivers. The Journal of Geology, 86(1): 13–33. https://doi.org/10.1086/649653
    Prell, W. L., Kutzbach, J. E., 1997. The Impact of Tibet-Himalayan Elevation on the Sensitivity of the Monsoon Climate System to Changes in Solar Radiation. In: Ruddiman, W, F., ed., Tectonic Uplift and Climate Change. Plenum Press, New York. 171–201. https://doi.org/10.1007/978-1-4615-5935-1_8
    Prell, W. L., Murray, D. W., Clemens, S. C., et al., 1992. Synthesis of Results from Scientific Drilling in the Indian Ocean. American Geophysical Union, Washington, D. C. 447–469
    Qiang, X. K., Li, Z. X., Powell, C. M., et al., 2001. Magnetostratigraphic Record of the Late Miocene Onset of the East Asian Monsoon, and Pliocene Uplift of Northern Tibet. Earth and Planetary Science Letters, 187(1/2): 83–93. https://doi.org/10.1016/S0012-821X(01)00281-3
    Raymo, M. E., Ruddiman, W. F., 1992. Tectonic Forcing of Late Cenozoic Climate. Nature, 359(6391): 117–122. https://doi.org/10.1038/359117a0
    RAB (Regional Geological Survey Team of Anhui Bureau of Geology and Mineral Resources), 1988. Stratigraphy of Anhui Province (Tertiary). Anhui Science and Technology Press, Hefei. 1–202 (in Chinese)
    Richardson, N. J., Densmore, A. L., Seward, D., et al., 2010. Did Incision of the Three Gorges Begin in the Eocene? Geology, 38(6): 551–554. https://doi.org/10.1130/g30527.1
    Shao, L., Li, C. A., Yuan, S. Y., et al., 2012. Neodymium Isotopic Variations of the Late Cenozoic Sediments in the Jianghan Basin: Implications for Sediment Source and Evolution of the Yangtze River. Journal of Asian Earth Sciences, 45: 57–64. https://doi.org/10.1016/j.jseaes.2011.09.018
    Shao, L., Yuan, S. Y., Li, C. A., et al., 2015. Changing Provenance of Late Cenozoic Sediments in the Jianghan Basin. Geoscience Frontiers, 6(4): 605–615. https://doi.org/10.1016/j.gsf.2014.04.010
    Shu, Q., Zhao, Z. J., Zhao, Y. F., et al., 2021. Magnetic Properties of Late Cenozoic Sediments in the Subei Basin: Implications for the Yangtze River Run-through Time. Journal of Coastal Research, 37(1): 122–131. https://doi.org/10.2112/jcoastres-d-20-00039.1
    Sun, J. M., Sheykh, M., Ahmadi, N., et al., 2021. Permanent Closure of the Tethyan Seaway in the Northwestern Iranian Plateau Driven by Cyclic Sea-Level Fluctuations in the Late Middle Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 564: 110172. https://doi.org/10.1016/j.palaeo.2020.110172
    Sun, J. M., Zhang, L. Y., Deng, C. L., et al., 2008. Evidence for Enhanced Aridity in the Tarim Basin of China since 5.3Ma. Quaternary Science Reviews, 27(9/10): 1012–1023. https://doi.org/10.1016/j.quascirev.2008.01.011
    Sun, J., Guo, F., Wu, H. C., et al., 2022. The Sedimentary Succession of the last 2.25 Myr in the Bohai Strait: Implications for the Quaternary Paleoenvironmental Evolution of the Bohai Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 585: 110704. https://doi.org/10.1016/j.palaeo.2021.110704
    Sun, X. L., Li, C. A., Kuiper, K. F., et al., 2018. Geochronology of Detrital Muscovite and Zircon Constrains the Sediment Provenance Changes in the Yangtze River during the Late Cenozoic. Basin Research, 30(4): 636–649. https://doi.org/10.1111/bre.12268
    Sun, X. L., Tian, Y. T., Kuiper, K. F., et al., 2021. No Yangtze River Prior to the Late Miocene: Evidence from Detrital Muscovite and K-Feldspar 40Ar/39Ar Geochronology. Geophysical Research Letters, 48(5): e2020GL089903. https://doi.org/10.1029/2020GL089903
    Thompson, J. M., Meffre, S., Danyushevsky, L., 2018. Impact of Air, Laser Pulse Width and Fluence on U-Pb Dating of Zircons by LA-ICPMS. Journal of Analytical Atomic Spectrometry, 33(2): 221–230. https://doi.org/10.1039/C7JA00357A
    Tian, S. M., Guan, K. G., Lin, X., et al., 2025. The Geochemical Characteristics of Zircon and K-Feldspar Grains from the Lower Yellow and Yangtze Rivers: Implications for Provenance Tracing Studies in the Western Pacific Ocean. Minerals, 15(2): 121. https://doi.org/10.3390/min15020121
    Vermeesch, P., 2012. On the Visualisation of Detrital Age Distributions. Chemical Geology, 312: 190–194. https://doi.org/10.1016/j.chemgeo.2012.04.021
    Vermeesch, P., 2013. Multi-Sample Comparison of Detrital Age Distributions. Chemical Geology, 341: 140–146. https://doi.org/10.1016/j.chemgeo.2013.01.010
    Wan, S. M., Clift, P. D., Li, A. C., et al., 2012. Tectonic and Climatic Controls on Long-Term Silicate Weathering in Asia since 5 Ma. Geophysical Research Letters, 39(15): L15611. https://doi.org/10.1029/2012GL052377
    Wang, E., Burchfiel, B. C., 2000. Late Cenozoic to Holocene Deformation in Southwestern Sichuan and Adjacent Yunnan, China, and Its Role in Formation of the Southeastern Part of the Tibetan Plateau. Geological Society of America Bulletin, 112(3): 413–423. https://doi.org/10.1130/0016-7606(2000)112<413:LCTHDI>2.0.CO;2 doi: 10.1130/0016-7606(2000)112<413:LCTHDI>2.0.CO;2
    Wang, K. S., Shi, X. F., Yao, Z. Q., et al., 2019. Heavy-Mineral-Based Provenance and Environment Analysis of a Pliocene Series Marking a Prominent Transgression in the South Yellow Sea. Sedimentary Geology, 382: 25–35. https://doi.org/10.1016/j.sedgeo.2019.01.005
    Wang, P. X., 2004. Cenozoic Deformation and the History of Sea-Land Interactions in Asia. Geophysical Monograph Series, 149: 1–22. https://doi.org/10.1029/149GM01
    Wang, P., Zheng, H. B., Liu, S. F., et al., 2018. Late Cretaceous Drainage Reorganization of the Middle Yangtze River. Lithosphere, 10(3): 392–405. https://doi.org/10.1130/l695.1
    Wang, P., Zheng, H. B., Wang, Y. D., et al., 2022. Sedimentology, Geochronology, and Provenance of the Late Cenozoic "Yangtze Gravel": Implications for Lower Yangtze River Reorganization and Tectonic Evolution in Southeast China. GSA Bulletin, 134(1/2): 463–486. https://doi.org/10.1130/b35851.1
    Wang, P., Zheng, H., Chen, L., et al., 2014. Exhumation of the Huangling Anticline in the Three Gorges Region: Cenozoic Sedimentary Record from the Western Jianghan Basin, China. Basin Research, 26(4): 505–522. https://doi.org/10.1111/bre.12047
    Wang, S. B., Zhao, Z. Z., Qiao, Y. S., et al., 2006. Age and Paleoenvironment of Xigeda Formation in Luding, Sichuan. Quaternary Sciences, 26(2): 257–264 (in Chinese with English Abstract) doi: 10.3321/j.issn:1001-7410.2006.02.014
    Wang, W. M., Zhou, X. D., Shao, J. J., et al., 2014. A Study on Late Cenozoic Gravel Deposits and Fossils in Yuhua Pebbles nearby Nanjing, East China. Journal of Stratigraphy, 38(4): 425–432. https://doi.org/10.19839/j.cnki.dcxzz.2014.04.006 (in Chinese with English Abstract)
    Wehausen, R., Brumsack, H. J., 2002. Astronomical Forcing of the East Asian Monsoon Mirrored by the Composition of Pliocene South China Sea Sediments. Earth and Planetary Science Letters, 201(3/4): 621–636. https://doi.org/10.1016/S0012-821X(02)00746-X
    Wei, C. Y., Voinchet, P., Zhang, Y. F., et al., 2020. Chronology and Provenance of the Yichang Gravel Layer Deposits in the Jianghan Basin, Middle Yangtze River Valley, China: Implications for the Timing of Channelization of the Three Gorges Valley. Quaternary International, 550: 39–54. https://doi.org/10.1016/j.quaint.2020.03.020
    Weislogel, A. L., Graham, S. A., Chang, E. Z., et al., 2010. Detrital Zircon Provenance from Three Turbidite Depocenters of the Middle-Upper Triassic Songpan-Ganzi Complex, Central China: Record of Collisional Tectonics, Erosional Exhumation, and Sediment Production. Geological Society of America Bulletin, 122(11/12): 2041–2062. https://doi.org/10.1130/b26606.1
    Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards Newsletter, 19(1): 1–23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x
    Willis, B., Blackwelder, E., Sargent, R. H. 1907. Research in China. Press of Gibson Brothers, Washington, D. C. 278–339
    Wu, F. Y., Ji, W. Q., Sun, D. H., et al., 2012. Zircon U-Pb Geochronology and Hf Isotopic Compositions of the Mesozoic Granites in Southern Anhui Province, China. Lithos, 150: 6–25. https://doi.org/10.1016/j.lithos.2012.03.020
    Xiang, F., Zhu, L. D., Wang, C. S., et al., 2007. Quaternary Sediment in the Yichang Area: Implications for the Formation of the Three Gorges of the Yangtze River. Geomorphology, 85(3/4): 249–258. https://doi.org/10.1016/j.geomorph.2006.03.027
    Xin, Y. J., Li, J. H., Dong, S. W., et al., 2017. Neoproterozoic Post-Collisional Extension of the Central Jiangnan Orogen: Geochemical, Geochronological, and Lu-Hf Isotopic Constraints from the Ca. 820–800 Ma Magmatic Rocks. Precambrian Research, 294: 91–110. https://doi.org/10.1016/j.precamres.2017.03.018
    Xu, G. Q., Kamp, P. J. J., 2000. Tectonics and Denudation Adjacent to the Xianshuihe Fault, Eastern Tibetan Plateau: Constraints from Fission Track Thermochronology. Journal of Geophysical Research: Solid Earth, 105(B8): 19231–19251. https://doi.org/10.1029/2000jb900159
    Xu, X. S., O'Reilly, S. Y., Griffin, W. L., et al., 2007. The Crust of Cathaysia: Age, Assembly and Reworking of Two Terranes. Precambrian Research, 158(1/2): 51–78. https://doi.org/10.1016/j.precamres.2007.04.010
    Xu, X., Zhu, X. Y., Shan, X. P., et al., 2018. Structure and Sedimentary Characteristics of the Meso-Cenozoic Basin Group along the Yangtze River in the Lower Yangtze Region. Petroleum Geology & Experiment, 40(3): 303–314. https://doi.org/10.11781/sysydz201803303 (in Chinese with English Abstract)
    Xu, X., Zuza, A. V., Chen, L., et al., 2021. Late Cretaceous to Early Cenozoic Extension in the Lower Yangtze Region (East China) Driven by Izanagi-Pacific Plate Subduction. Earth-Science Reviews, 221: 103790. https://doi.org/10.1016/j.earscirev.2021.103790
    Yan, Y., Carter, A., Huang, C. Y., et al., 2012. Constraints on Cenozoic Regional Drainage Evolution of SW China from the Provenance of the Jianchuan Basin. Geochemistry, Geophysics, Geosystems, 13(3): Q03001. https://doi.org/10.1029/2011GC003803
    Yang, C. Q., Shen, C. B., Zattin, M., et al., 2019. Provenances of Cenozoic Sediments in the Jianghan Basin and Implications for the Formation of the Three Gorges. International Geology Review, 61(16): 1980–1999. https://doi.org/10.1080/00206814.2019.1576066
    Yang, S. Y., Li, C. X., Yokoyama, K., 2006. Elemental Compositions and Monazite Age Patterns of Core Sediments in the Changjiang Delta: Implications for Sediment Provenance and Development History of the Changjiang River. Earth and Planetary Science Letters, 245(3/4): 762–776. https://doi.org/10.1016/j.epsl.2006.03.042
    Yang, S. Y., Wang, Z. B., Guo, Y., et al., 2009. Heavy Mineral Compositions of the Changjiang (Yangtze River) Sediments and Their Provenance-Tracing Implication. Journal of Asian Earth Sciences, 35(1): 56–65. https://doi.org/10.1016/j.jseaes.2008.12.002
    Yang, S. Y., Zhang, F., Wang, Z. B., 2012. Grain Size Distribution and Age Population of Detrital Zircons from the Changjiang (Yangtze) River System, China. Chemical Geology, 296: 26–38. https://doi.org/10.1016/j.chemgeo.2011.12.016
    Yang, X. D., Zhao, X. T., Wu, Z. H., et al., 2018. Ar-Ar Geochronology of Basalts in Liuhe Area, Nanjing and Its Geological Significance. Quaternary Sciences, 38(3): 705–710. https://doi.org/10.11928/j.issn.1001-7410.2018.03.15 (in Chinese with English Abstract)
    Yang, Z. L., Gao, T. S., Ma, M. 2019. Geological Map of the People's Republic of China (East China, 1 : 1 500 000). Geological Publishing House, Beijing. 1–88 (in Chinese)
    Yu, J. J., Yue, W., Liu, P., et al., 2020. Provenance Shift during the Plio-Pleistocene in the Vertex of Yangtze Delta and Its Geomorphological Implications. Minerals, 10(11): 996. https://doi.org/10.3390/min10110996
    Yu, Z., Huang, D. 1996. Formation Environment of Net-Veined Laterite and Xiashu Loess and Their Ages in the Area along the Yangtze River, Anhui Province. Geology of Anhui, 6(3): 48–56 (in Chinese with English Abstract)
    Yue, W., Jin, B. F., Zhao, B. C., 2018. Transparent Heavy Minerals and Magnetite Geochemical Composition of the Yangtze River Sediments: Implication for Provenance Evolution of the Yangtze Delta. Sedimentary Geology, 364: 42–52. https://doi.org/10.1016/j.sedgeo.2017.12.006
    Yue, W., Yang, S. Y., Zhao, B. C., et al., 2019. Changes in Environment and Provenance within the Changjiang (Yangtze River) Delta during Pliocene to Pleistocene Transition. Marine Geology, 416: 105976. https://doi.org/10.1016/j.margeo.2019.105976
    Zhang, D., Li, C. A., Zhang, S. T., et al., 2024. Discovery of the Miocene Yuanmou Conglomerate and Its Significance for the Drainage Evolution in the Southeastern Tibetan Plateau. Journal of Earth Science, 35(6): 2067–2080. https://doi.org/10.1007/s12583-023-1937-7
    Zhang, J. Y., Krijgsman, W., Lu, Y. C., et al., 2021. Detrital Zircon Ages Reveal Yangtze Provenance since the Early Oligocene in the East China Sea Shelf Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 577: 110548. https://doi.org/10.1016/j.palaeo.2021.110548
    Zhang, J., Wan, S. M., Clift, P. D., et al., 2019. History of Yellow River and Yangtze River Delivering Sediment to the Yellow Sea since 3.5 Ma: Tectonic or Climate Forcing? Quaternary Science Reviews, 216: 74–88. https://doi.org/10.1016/j.quascirev.2019.06.002
    Zhang, P. Z., Molnar, P., Downs, W. R., 2001. Increased Sedimentation Rates and Grain Sizes 2–4 Myr ago Due to the Influence of Climate Change on Erosion Rates. Nature, 410(6831): 891–897. https://doi.org/10.1038/35073504
    Zhang, P., Miao, Y. F., Zhang, Z. Y., et al., 2013. Late Cenozoic Sporopollen Records in the Yangtze River Delta, East China and Implications for East Asian Summer Monsoon Evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 388: 153–165. https://doi.org/10.1016/j.palaeo.2013.08.014
    Zhang, X. C., Huang, C. Y., Wang, Y. J., et al., 2017. Evolving Yangtze River Reconstructed by Detrital Zircon U-Pb Dating and Petrographic Analysis of Miocene Marginal Sea Sedimentary Rocks of the Western Foothills and Hengchun Peninsula, Taiwan. Tectonics, 36(4): 634–651. https://doi.org/10.1002/2016TC004357
    Zhang, X. Y., Liu, Z. P., Fan, D. F., et al., 2003. Sandy Gravel Sequence in Neogene in Nanjing and Yizheng Area and Genesis and Evolution of the Old Yangtze River. Jiangsu Geology, 27(3): 140–147 (in Chinese with English Abstract).
    Zhang, X. Y., Liu, Z. P., Fan, D. F., et al., 2004. Stratigraphic Sequence and Age of the Neogene in the Nanjing-Yizheng Area: A Discussion. Chinese Geology, 31(2): 179–185 (in Chinese with English Abstract)
    Zhang, Y. F., Li, C. A., Wang, Q. L., et al., 2008. Magnetism Parameters Characteristics of Drilling Deposits in Jianghan Plain and Indication for Forming of the Yangtze River Three Gorges. Chinese Science Bulletin, 53(4): 584–590. https://doi.org/10.1007/s11434-008-0111-1
    Zhang, Z. J., Daly, J. S., Li, C. A., et al., 2017. Sedimentary Provenance Constraints on Drainage Evolution Models for SE Tibet: Evidence from Detrital K-Feldspar. Geophysical Research Letters, 44(9): 4064–4073. https://doi.org/10.1002/2017gl073185
    Zhang, Z. J., Daly, J. S., Li, C. A., et al., 2021. Formation of the Three Gorges (Yangtze River) no Earlier than 10 Ma. Earth-Science Reviews, 216: 103601. https://doi.org/10.1016/j.earscirev.2021.103601
    Zhang, Z. J., Tyrrell, S., Li, C. A., et al., 2016. Provenance of Detrital K-Feldspar in Jianghan Basin Sheds New Light on the Pliocene–Pleistocene Evolution of the Yangtze River. Geological Society of America Bulletin, 128(9/10): 1339–1351. https://doi.org/10.1130/b31445.1
    Zhao, X. D., Zhang, H. P., Tao, Y. L., et al., 2021. Pliocene to Early Pleistocene Drainage Reorganization in Eastern Tibet Inferred from Detrital Zircons. Geophysical Research Letters, 48(20): e2021GL094563. https://doi.org/10.1029/2021GL094563
    Zhao, X. T., Hu, D. G., Zhang, Y. S., 2008. Genesis and Age of the Gravels Underlying the Xigeda Formation of Panzhihua, Sichuan, China, and Valley Development of the Ancient Jinsha River. Acta Geoscientica Sinica, 29(1): 1–12. https://doi.org/10.3321/j.issn: 1006-3021.2008.01.001 (in Chinese with English Abstract) doi: 10.3321/j.issn:1006-3021.2008.01.001
    Zheng, H. B., Clift, P. D., He, M. Y., et al., 2021. Formation of the First Bend in the Late Eocene Gave Birth to the Modern Yangtze River, China. Geology, 49(1): 35–39. https://doi.org/10.1130/g48149.1
    Zheng, H. B., Clift, P. D., Wang, P., et al., 2013. Pre-Miocene Birth of the Yangtze River. Proceedings of the National Academy of Sciences of the United States of America, 110(19): 7556–7561. https://doi.org/10.1073/pnas.1216241110
    Zheng, H. B., Powell, C. M., An, Z. S., et al., 2000. Pliocene Uplift of the Northern Tibetan Plateau. Geology, 28(8): 715–718. https://doi.org/10.1130/0091-7613(2000)028<0715:puotnt>2.3.co;2 doi: 10.1130/0091-7613(2000)028<0715:puotnt>2.3.co;2
    Zheng, H. B., Powell, C. M., Rea, D. K., et al., 2004. Late Miocene and Mid-Pliocene Enhancement of the East Asian Monsoon as Viewed from the Land and Sea. Global and Planetary Change, 41(3/4): 147–155. https://doi.org/10.1016/j.gloplacha.2004.01.003
    Zheng, Y. F., Wu, R. X., Wu, Y. B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust: Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3/4): 351–383. https://doi.org/10.1016/j.precamres.2008.01.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views(684) PDF downloads(151) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return