Citation: | Muhammad Inayat Ullah Khan, Liuqin Huang, Geng Wu, Jian Yang, Xiangyu Guan, Hongchen Jiang. GeoChip-Based Microbial Functions in Biogeochemical Cycles and Their Responses to Environmental Factors in Tengchong Hot Springs. Journal of Earth Science, 2025, 36(2): 382-394. doi: 10.1007/s12583-024-0009-0 |
Microorganisms actively participate in biogeochemical cycling processes and play a crucial role in maintaining the dynamic balance of hot spring ecosystems. However, the distribution of microbial functional genes and their influencing factors in hot springs remain largely unclear. Therefore, this study investigated the microbial functional genes and their potential for controlling biogeochemical cycles (C, N, S, and P) in the hot Springs of Tengchong, China, using the Geochip method, a functional gene microarray technology. The examined hot springs have very different microbial functional genes. A total of 22 736 gene probe signals were identified, belonging to 567 functional genes and associated with 15 ecological functions, mainly involving stress response, carbon cycle, nitrogen cycle, sulfur cycle, phosphorus cycle and energy processes. The
Alcamán, M. E., Alcorta, J., Bergman, B., et al., 2017. Physiological and Gene Expression Responses to Nitrogen Regimes and Temperatures in Mastigocladus Sp. Strain CHP1, a Predominant Thermotolerant Cyanobacterium of Hot Springs. Systematic and Applied Microbiology, 40(2): 102–113. https://doi.org/10.1016/j.syapm.2016.11.007 |
Alcamán-Arias, M. E., Pedrós-Alió, C., Tamames, J., et al., 2018. Diurnal Changes in Active Carbon and Nitrogen Pathways along the Temperature Gradient in Porcelana Hot Spring Microbial Mat. Frontiers in Microbiology, 9: 2353. https://doi.org/10.3389/fmicb.2018.02353 |
Aoshima, M., Ishii, M., Igarashi, Y., 2004. A Novel Enzyme, Citryl-CoA Lyase, Catalysing the Second Step of the Citrate Cleavage Reaction in Hydrogenobacter Thermophilus TK-6. Molecular Microbiology, 52(3): 763–770. https://doi.org/10.1111/j.1365-2958.2004.04010.x |
Badhai, J., Ghosh, T. S., Das, S. K., 2015. Taxonomic and Functional Characteristics of Microbial Communities and Their Correlation with Physicochemical Properties of Four Geothermal Springs in Odisha, India. Frontiers in Microbiology, 6: 1166. https://doi.org/10.3389/fmicb.2015.01166 |
Bayer, K., Moitinho-Silva, L., Brümmer, F., et al., 2014. GeoChip-Based Insights into the Microbial Functional Gene Repertoire of Marine Sponges (High Microbial Abundance, Low Microbial Abundance) and Seawater. FEMS Microbiology Ecology, 90(3): 832–843. https://doi.org/10.1111/1574-6941.12441 |
Bennett, A. C., Murugapiran, S. K., Kees, E. D., et al., 2022. Temperature and Geographic Location Impact the Distribution and Diversity of Photoautotrophic Gene Variants in Alkaline Yellowstone Hot Springs. Microbiology Spectrum, 10(3): e0146521. https://doi.org/10.1128/spectrum.01465-21 |
Bowen de León, K., Gerlach, R., Peyton, B. M., et al., 2013. Archaeal and Bacterial Communities in Three Alkaline Hot Springs in Heart Lake Geyser Basin, Yellowstone National Park. Frontiers in Microbiology, 4: 330. https://doi.org/10.3389/fmicb.2013.00330 |
Chan, C. S., Chan, K. -G., Tay, Y. -L., et al., 2015. Diversity of Thermophiles in a Malaysian Hot Spring Determined Using 16S rRNA and Shotgun Metagenome Sequencing. Frontiers in Microbiology, 6: 177. https://doi.org/10.3389/fmicb.2015.00177 |
Chen, S., Peng, X. T., Xu, H. C., et al., 2016. Nitrification of Archaeal Ammonia Oxidizers in a High-Temperature Hot Spring. Biogeosciences, 13(7): 2051–2060. https://doi.org/10.5194/bg-13-2051-2016 |
De Anda, V., Chen, L. X., Dombrowski, N., et al., 2021. Brockarchaeota, a Novel Archaeal Phylum with Unique and Versatile Carbon Cycling Pathways. Nature Communications, 12(1): 2404. https://doi.org/10.1038/s41467-021-22736-6 |
de Hoon, M. J. L., Imoto, S., Nolan, J., et al., 2004. Open Source Clustering Software. Bioinformatics, 20(9): 1453–1454. https://doi.org/10.1093/bioinformatics/bth078 |
Francheteau, J., Needham, H. D., Choukroune, P., et al., 1979. Massive Deep-Sea Sulphide Ore Deposits Discovered on the East Pacific Rise. Nature, 277: 523–528. https://doi.org/10.1038/277523a0 |
Hamilton, T. L., Koonce, E., Howells, A., et al., 2014. Competition for Ammonia Influences the Structure of Chemotrophic Communities in Geothermal Springs. Applied and Environmental Microbiology, 80(2): 653–661. https://doi.org/10.1128/aem.02577-13 |
Hazen, T. C., Dubinsky, E. A., DeSantis, T. Z., et al., 2010. Deep-Sea Oil Plume Enriches Indigenous Oil-Degrading Bacteria. Science, 330(6001): 204–208. https://doi.org/10.1126/science.1195979 |
He, Z. L., Deng, Y., van Nostrand, J. D., et al., 2010. GeoChip 3.0 as a High-Throughput Tool for Analyzing Microbial Community Composition, Structure and Functional Activity. The ISME Journal, 4(9): 1167–1179. https://doi.org/10.1038/ismej.2010.46 |
He, Z. L., Xiong, J. B., Kent, A. D., et al., 2014. Distinct Responses of Soil Microbial Communities to Elevated CO2 and O3 in a Soybean Agro-Ecosystem. The ISME Journal, 8(3): 714–726. https://doi.org/10.1038/ismej.2013.177 |
Hou, W. G., Wang, S., Dong, H. L., et al., 2013. A Comprehensive Census of Microbial Diversity in Hot Springs of Tengchong, Yunnan Province China Using 16S rRNA Gene Pyrosequencing. PLoS One, 8(1): e53350. https://doi.org/10.1371/journal.pone.0053350 |
Hua, Z. S., Qu, Y. N., Zhu, Q. Y., et al., 2018. Genomic Inference of the Metabolism and Evolution of the Archaeal Phylum Aigarchaeota. Nature Communications, 9(1): 2832. https://doi.org/10.1038/s41467-018-05284-4 |
Hua, Z. S., Wang, Y. L., Evans, P. N., et al., 2019. Insights into the Ecological Roles and Evolution of Methyl-Coenzyme M Reductase-Containing Hot Spring Archaea. Nature Communications, 10(1): 4574. https://doi.org/10.1038/s41467-019-12574-y |
Hügler, M., Sievert, S. M., 2011. Beyond the Calvin Cycle: Autotrophic Carbon Fixation in the Ocean. Annual Review of Marine Science, 3: 261–289. https://doi.org/10.1146/annurev-marine-120709-142712 |
Jiang, H. C., Huang, L. Q., Yang, J., et al., 2018. A Microbial Analysis Primer for Biogeochemists. Environmental Geochemistry: Site Characterization, Data Analysis and Case Histories, Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-444-63763-5.00024-0 |
Jiang, H. C., Huang, Q. Y., Dong, H. L., et al., 2010. RNA-Based Investigation of Ammonia-Oxidizing Archaea in Hot Springs of Yunnan Province, China. Applied and Environmental Microbiology, 76(13): 4538–4541. https://doi.org/10.1128/aem.00143-10 |
Larimer, F. W., Chain, P., Hauser, L., et al., 2004. Complete Genome Sequence of the Metabolically Versatile Photosynthetic Bacterium Rhodopseudomonas Palustris. Nature Biotechnology, 22(1): 55–61. https://doi.org/10.1038/nbt923 |
Li, H. Z., Yang, Q. H., Li, J., et al., 2015. The Impact of Temperature on Microbial Diversity and AOA Activity in the Tengchong Geothermal Field, China. Scientific Reports, 5: 17056. https://doi.org/10.1038/srep17056 |
Li, J. H., Kusky, T. M., 2007. World's Largest Known Precambrian Fossil Black Smoker Chimneys and Associated Microbial Vent Communities, North China: Implications for Early Life. Gondwana Research, 12(1/2): 84–100. https://doi.org/10.1016/j.gr.2006.10.024 |
Li, J. S., Zhang, Z. F., Liu, T., et al., 2022. Bacterial and Archaeal Water and Sediment Communities of Two Hot Spring Streams in Tengchong, Yunnan Province, China. Diversity, 14(5): 381. https://doi.org/10.3390/d14050381 |
Li, Z. L., Tang, Z., Song, Z. P., et al., 2022. Variations and Controlling Factors of Soil Denitrification Rate. Global Change Biology, 28(6): 2133–2145. https://doi.org/10.1111/gcb.16066 |
Lin, K. H., Liao, B. Y., Chang, H. W., et al., 2015. Metabolic Characteristics of Dominant Microbes and Key Rare Species from an Acidic Hot Spring in Taiwan Revealed by Metagenomics. BMC Genomics, 16: 1029. https://doi.org/10.1186/s12864-015-2230-9 |
Lu, Z. M., He, Z. L., Parisi, V. A., et al., 2012. GeoChip-Based Analysis of Microbial Functional Gene Diversity in a Landfill Leachate-Contaminated Aquifer. Environmental Science & Technology, 46(11): 5824–5833. https://doi.org/10.1021/es300478j |
Luvizotto, D. M., Araujo, J. E., de Cássia P Silva, M., et al., 2019. The Rates and Players of Denitrification, Dissimilatory Nitrate Reduction to Ammonia (DNRA) and Anaerobic Ammonia Oxidation (Anammox) in Mangrove Soils. Anais da Academia Brasileira de Ciencias, 91(suppl 1): e20180373. https://doi.org/10.1590/0001-3765201820180373 |
Ma, L., She, W. Y., Wu, G., et al., 2021. Influence of Temperature and Sulfate Concentration on the Sulfate/Sulfite Reduction Prokaryotic Communities in the Tibetan Hot Springs. Microorganisms, 9(3): 583. https://doi.org/10.3390/microorganisms9030583 |
Meng, S. S., Peng, T., Liu, X. B., et al., 2022. Ecological Role of Bacteria Involved in the Biogeochemical Cycles of Mangroves Based on Functional Genes Detected through GeoChip 5.0. mSphere, 7(1): e0093621. https://doi.org/10.1128/msphere.00936-21 |
Nakagawa, S., Ken, T. K., 2008. Deep-Sea Vent Chemoautotrophs: Diversity, Biochemistry and Ecological Significance. FEMS Microbiology Ecology, 65(1): 1–14. https://doi.org/10.1111/j.1574-6941.2008.00502.x |
Nishiyama, E., Higashi, K., Mori, H., et al., 2018. The Relationship between Microbial Community Structures and Environmental Parameters Revealed by Metagenomic Analysis of Hot Spring Water in the Kirishima Area, Japan. Frontiers in Bioengineering and Biotechnology, 6: 202. https://doi.org/10.3389/fbioe.2018.00202 |
Panda, A. K., Bisht, S. S., Rana, M., et al., 2018. Biotechnological Potential of Thermophilic Actinobacteria Associated with Hot Springs. New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier, Amsterdam. 155–164. https://doi.org/10.1016/b978-0-444-63994-3.00010-2 |
Paul, S., Cortez, Y., Vera, N., et al., 2016. Metagenomic Analysis of Microbial Community of an Amazonian Geothermal Spring in Peru. Genomics Data, 9: 63–66. https://doi.org/10.1016/j.gdata.2016.06.013 |
Power, J. F., Carere, C. R., Lee, C. K., et al., 2018. Microbial Biogeography of 925 Geothermal Springs in New Zealand. Nature Communications, 9(1): 2876. https://doi.org/10.1038/s41467-018-05020-y |
Preston, L. J., Genge, M. J., 2010. The Rhynie Chert, Scotland, and the Search for Life on Mars. Astrobiology, 10(5): 549–560. https://doi.org/10.1089/ast.2008.0321 |
Qi, Y. L., Evans, P. N., Li, Y. X., et al., 2021. Comparative Genomics Reveals Thermal Adaptation and a High Metabolic Diversity in "Candidatus Bathyarchaeia". mSystems, 6(4): e0025221. https://doi.org/10.1128/mSystems.00252-21 |
Reuther, J., Wohlleben, W., 2007. Nitrogen Metabolism in Streptomyces Coelicolor: Transcriptional and Post-Translational Regulation. Journal of Molecular Microbiology and Biotechnology, 12(1/2): 139–146. https://doi.org/10.1159/000096469 |
Rhee, S. K., Liu, X. D., Wu, L. Y., et al., 2004. Detection of Genes Involved in Biodegradation and Biotransformation in Microbial Communities by Using 50-Mer Oligonucleotide Microarrays. Applied and Environmental Microbiology, 70(7): 4303–4317. https://doi.org/10.1128/aem.70.7.4303-4317.2004 |
Sadeepa, D., Sirisena, K., Manage, P. M., 2022. Diversity of Microbial Communities in Hot Springs of Sri Lanka as Revealed by 16S rRNA Gene High-Throughput Sequencing Analysis. Gene, 812: 146103. https://doi.org/10.1016/j.gene.2021.146103 |
Sharma, N., Kumar, J., Abedin, M. M., et al., 2020. Metagenomics Revealing Molecular Profiling of Community Structure and Metabolic Pathways in Natural Hot Springs of the Sikkim Himalaya. BMC Microbiology, 20(1): 246. https://doi.org/10.1186/s12866-020-01923-3 |
Sharp, J. H., Beauregard, A. Y., Burdige, D., et al., 2004. A Direct Instrument Comparison for Measurement of Total Dissolved Nitrogen in Seawater. Marine Chemistry, 84(3/4): 181–193. https://doi.org/10.1016/j.marchem.2003.07.003 |
Sharp, J. H., Benner, R., Bennett, L., et al., 1993. Re-Evaluation of High Temperature Combustion and Chemical Oxidation Measurements of Dissolved Organic Carbon in Seawater. Limnology and Oceanography, 38(8): 1774–1782. https://doi.org/10.4319/lo.1993.38.8.1774 |
Silver, D. M., Kötting, O., Moorhead, G. B. G., 2014. Phosphoglucan Phosphatase Function Sheds Light on Starch Degradation. Trends in Plant Science, 19(7): 471–478. https://doi.org/10.1016/j.tplants.2014.01.008 |
Song, Z. Q., Wang, F. P., Zhi, X. Y., et al., 2013. Bacterial and Archaeal Diversities in Yunnan and Tibetan Hot Springs, China. Environmental Microbiology, 15(4): 1160–1175. https://doi.org/10.1111/1462-2920.12025 |
Song, Z. Q., Wang, L., Liang, F., et al., 2022. NifH Gene Expression and Diversity in Geothermal Springs of Tengchong, China. Frontiers in Microbiology, 13: 980924. https://doi.org/10.3389/fmicb.2022.980924 |
Song, Z. -Q., Wang, L., Ma, Y., 2025. Hydrochemistry Predominantly Shapes the Unique Nitrogen-Fixing Bacterial Communities in Tibetan Hot Springs. Journal of Earth Science, 36(1): 134–145. https://doi.org/10.1007/s12583-024-0147-4 |
Thiel, V., Wood, J. M., Olsen, M. T., et al., 2016. The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. I. Microbial Diversity Based on 16S rRNA Gene Amplicons and Metagenomic Sequencing. Frontiers in Microbiology, 7: 919. https://doi.org/10.3389/fmicb.2016.00919 |
Tiquia, S. M., Wu, L. Y., Chong, S. C., et al., 2004. Evaluation of 50-Mer Oligonucleotide Arrays for Detecting Microbial Populations in Environmental Samples. BioTechniques, 36(4): 664–670, 672, 674–675. https://doi.org/10.2144/04364rr02 |
Van Nostrand, J. D., Wu, W. M., Wu, L. Y., et al., 2009. GeoChip-Based Analysis of Functional Microbial Communities during the Reoxidation of a Bioreduced Uranium-Contaminated Aquifer. Environmental Microbiology, 11(10): 2611–2626. https://doi.org/10.1111/j.1462-2920.2009.01986.x |
Waldron, P. J., Wu, L. Y., van Nostrand, J. D., et al., 2009. Functional Gene Array-Based Analysis of Microbial Community Structure in Groundwaters with a Gradient of Contaminant Levels. Environmental Science & Technology, 43(10): 3529–3534. https://doi.org/10.1021/es803423p |
Wang, S., Hou, W. G., Dong, H. L., et al., 2013. Control of Temperature on Microbial Community Structure in Hot Springs of the Tibetan Plateau. PLoS One, 8(5): e62901. https://doi.org/10.1371/journal.pone.0062901 |
Wang, F., Zhou, H., Meng, J., et al., 2009. GeoChip-Based Analysis of Metabolic Diversity of Microbial Communities at the Juan de Fuca Ridge Hydrothermal Vent. Proceedings of the National Academy of Sciences, 106(12): 4840–4845. https://doi.org/10.1038/ismej.2010.144 |
Wu, G., Huang, L. Q., Jiang, H. C., et al., 2017. Thioarsenate Formation Coupled with Anaerobic Arsenite Oxidation by a Sulfate-Reducing Bacterium Isolated from a Hot Spring. Frontiers in Microbiology, 8: 1336. https://doi.org/10.3389/fmicb.2017.01336 |
Wu, L. Y., Kellogg, L., Devol, A. H., et al., 2008. Microarray-Based Characterization of Microbial Community Functional Structure and Heterogeneity in Marine Sediments from the Gulf of Mexico. Applied and Environmental Microbiology, 74(14): 4516–4529. https://doi.org/10.1128/aem.02751-07 |
Wu, L. Y., Liu, X. D., Schadt, C. W., et al., 2006. Microarray-Based Analysis of Subnanogram Quantities of Microbial Community DNAs by Using Whole-Community Genome Amplification. Applied and Environmental Microbiology, 72(7): 4931–4941. https://doi.org/10.1128/aem.02738-05 |
Xie, W., Wang, F. P., Guo, L., et al., 2011. Comparative Metagenomics of Microbial Communities Inhabiting Deep-Sea Hydrothermal Vent Chimneys with Contrasting Chemistries. The ISME Journal, 5(3): 414–426. https://doi.org/10.1038/ismej.2010.144 |
Xu, M. Y., Wu, W. M., Wu, L. Y., et al., 2010. Responses of Microbial Community Functional Structures to Pilot-Scale Uranium in situ Bioremediation. The ISME Journal, 4(8): 1060–1070. https://doi.org/10.1038/ismej.2010.31 |
Zhang, Y. G., Lu, Z. M., Liu, S. S., et al., 2013. Geochip-Based Analysis of Microbial Communities in Alpine Meadow Soils in the Qinghai-Tibetan Plateau. BMC Microbiology, 13: 72. https://doi.org/10.1186/1471-2180-13-72 |
Zhang, Y. M., Wu, G., Jiang, H. C., et al., 2018. Abundant and Rare Microbial Biospheres Respond Differently to Environmental and Spatial Factors in Tibetan Hot Springs. Frontiers in Microbiology, 9: 2096. https://doi.org/10.3389/fmicb.2018.02096 |
Zhang, Y., Liu, T., Li, M. M., et al., 2023. Hot Spring Distribution and Survival Mechanisms of Thermophilic Comammox Nitrospira. The ISME Journal, 17(7): 993–1003. https://doi.org/10.1038/s41396-023-01409-w |
Zhou, J., Bruns, M. A., Tiedje, J. M., 1996. DNA Recovery from Soils of Diverse Composition. Applied and Environmental Microbiology, 62(2): 316–322. https://doi.org/10.1128/aem.62.2.316-322.1996 |
Zierenberg, R. A., Adams, M. W., Arp, A. J., 2000. Life in Extreme Environments: Hydrothermal Vents. Proceedings of the National Academy of Sciences of the United States of America, 97(24): 12961–12962. https://doi.org/10.1073/pnas.210395997 |