Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 2
Apr 2025
Turn off MathJax
Article Contents
Hongfei Chi, Xiufeng Yin, Xuefeng Zhang, Jingyi Zhu, Lin Zhao, Yongcui Deng, Pengfei Liu, Yongqin Liu. Influence of Interspecies Interactions on Bacterial Community Assembly in the Active and Permafrost Layers on the Qinghai-Tibet Plateau. Journal of Earth Science, 2025, 36(2): 395-407. doi: 10.1007/s12583-024-0046-8
Citation: Hongfei Chi, Xiufeng Yin, Xuefeng Zhang, Jingyi Zhu, Lin Zhao, Yongcui Deng, Pengfei Liu, Yongqin Liu. Influence of Interspecies Interactions on Bacterial Community Assembly in the Active and Permafrost Layers on the Qinghai-Tibet Plateau. Journal of Earth Science, 2025, 36(2): 395-407. doi: 10.1007/s12583-024-0046-8

Influence of Interspecies Interactions on Bacterial Community Assembly in the Active and Permafrost Layers on the Qinghai-Tibet Plateau

doi: 10.1007/s12583-024-0046-8
More Information
  • Corresponding author: Pengfei Liu, liupf@lzu.edu.cn; Yongqin Liu, yql@lzu.edu.cn
  • Received Date: 01 Jul 2024
  • Accepted Date: 28 Jul 2024
  • Issue Publish Date: 30 Apr 2025
  • Bacterial communities play a crucial role in permafrost biogeochemical cycling and ecosystem function maintenance. Bacterial interaction is one of the main factors in shaping soil bacterial communities. However, how would bacterial interaction influence the bacterial communities in permafrost of the Qinghai-Tibet Plateau (QTP) remains largely unknown. Here we collected paired soil samples from both the active and permafrost layers of two typical QTP permafrost regions in October 2020 for Tuotuohe River (TTH) and May 2022 for Aerjin (ARJ), and investigated the bacterial communities and the role of interactions in structuring the bacterial community and its assembly process through amplicon sequencing of the 16S rRNA gene. Our study revealed distinct bacterial communities, with significant differences in the relative abundances of Proteobacteria (P < 0.05), Acidobacteriota (P < 0.001), Bacteroidota (P < 0.05), and Planctomycetota (P < 0.001) between the active layer and the permafrost layer. More importantly, we found that interspecies interactions, including both positive and negative associations, were strongly correlated with bacterial alpha-diversity and played a significant role in community variation and assembly process. Our findings also showed that the community assembly in both the active and permafrost layers was primarily driven by homogeneous selection of deterministic processes, with interspecies interactions accounting for more than 58% and 63% of all assembly mechanisms, respectively. This is the first study to quantify the contribution of bacterial interactions in shaping the bacterial community and its assembly process in permafrost of QTP, highlighting the importance of considering interspecies interactions in future modeling efforts. Our work also emphasizes the necessity of including interspecies interactions in microbial process projections to reduce uncertainty.

     

  • Electronic Supplementary Materials: Supplementary materials (Supplementary methods, results and discussion; Tables S1–S2; Figures S1–S8) are available in the online version of this article at https://doi.org/10.1007/s12583-024-0046-8.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Adams, A. E., Besozzi, E. M., Shahrokhi, G., et al., 2022. A Case for Associational Resistance: Apparent Support for the Stress Gradient Hypothesis Varies with Study System. Ecology Letters, 25(1): 202–217. https://doi.org/10.1111/ele.13917
    Altshuler, I., Goordial, J., Whyte, L. G., 2017. Microbial Life in Permafrost. Psychrophiles: From Biodiversity to Biotechnology. Springer International Publishing, Cham, 153–179. https://doi.org/10.1007/978-3-319-57057-0_8
    Altshuler, I., Hamel, J., Turney, S., et al., 2019. Species Interactions and Distinct Microbial Communities in High Arctic Permafrost Affected Cryosols are Associated with the CH4 and CO2 Gas Fluxes. Environmental Microbiology, 21(10): 3711–3727. https://doi.org/10.1111/1462-2920.14715
    Baker, C. C. M., Barker, A. J., Douglas, T. A., et al., 2023. Seasonal Variation in Near-Surface Seasonally Thawed Active Layer and Permafrost Soil Microbial Communities. Environmental Research Letters, 18(5): 055001. https://doi.org/10.1088/1748-9326/acc542
    Barber, J. N., Nicholson, L. C., Woods, L. C., et al., 2022. Species Interactions Constrain Adaptation and Preserve Ecological Stability in an Experimental Microbial Community. The ISME Journal, 16(5): 1442–1452. https://doi.org/10.1038/s41396-022-01191-1
    Bastian, M., Heymann, S., Jacomy, M., 2009. Gephi: An Open Source Software for Exploring and Manipulating Networks. Proceedings of the International AAAI Conference on Web and Social Media, 3(1): 361–362. https://doi.org/10.1609/icwsm.v3i1.13937
    Bokulich, N. A., Kaehler, B. D., Rideout, J. R., et al., 2018. Optimizing Taxonomic Classification of Marker-Gene Amplicon Sequences with QIIME 2's Q2-Feature-Classifier Plugin. Microbiome, 6(1): 90. https://doi.org/10.1186/s40168-018-0470-z
    Bottery, M. J., Matthews, J. L., Wood, A. J., et al., 2022. Inter-Species Interactions Alter Antibiotic Efficacy in Bacterial Communities. The ISME Journal, 16: 812–821. https://doi.org/10.1038/s41396-021-01130-6
    Bottos, E. M., Kennedy, D. W., Romero, E. B., et al., 2018. Dispersal Limitation and Thermodynamic Constraints Govern Spatial Structure of Permafrost Microbial Communities. FEMS Microbiology Ecology, 94(8): fiy110. https://doi.org/10.1093/femsec/fiy110
    Chen, Y. L., Deng, Y., Ding, J. Z., et al., 2017. Distinct Microbial Communities in the Active and Permafrost Layers on the Tibetan Plateau. Molecular Ecology, 26(23): 6608–6620. https://doi.org/10.1111/mec.14396
    Chu, H., Sun, H., Tripathi, B. M., et al., 2016. Bacterial Community Dissimilarity between the Surface and Subsurface Soils Equals Horizontal Differences over Several Kilometers in the Western Tibetan Plateau. Environ Microbiol, 18(5): 1523–1533. https://doi.org/10.1111/1462-2920.13236
    Cordero, O. X., Datta, M. S., 2016. Microbial Interactions and Community Assembly at Microscales. Curr Opin Microbiol, 31: 227–234. https://doi.org/10.1016/j.mib.2016.03.015
    Cosetta, C. M., Wolfe, B. E., 2019. Causes and Consequences of Biotic Interactions within Microbiomes. Current Opinion in Microbiology, 50: 35–41. https://doi.org/10.1016/j.mib.2019.09.004
    D'Amen, M., Mod, H. K., Gotelli, N. J., et al., 2018. Disentangling Biotic Interactions, Environmental Filters, and Dispersal Limitation as Drivers of Species Co-Occurrence. Ecography, 41(8): 1233–1244. https://doi.org/10.1111/ecog.03148
    Doherty, S. J., Barbato, R. A., Grandy, A. S., et al., 2020. The Transition from Stochastic to Deterministic Bacterial Community Assembly during Permafrost Thaw Succession. Frontiers in Microbiology, 11: 596589. https://doi.org/10.3389/fmicb.2020.596589
    Ernakovich, J. G., Barbato, R. A., Rich, V. I., et al., 2022. Microbiome Assembly in Thawing Permafrost and Its Feedbacks to Climate. Global Change Biology, 28(17): 5007–5026. https://doi.org/10.1111/gcb.16231
    Gavish, Y., Marsh, C. J., Kuemmerlen, M., et al., 2017. Accounting for Biotic Interactions through Alpha-Diversity Constraints in Stacked Species Distribution Models. Methods in Ecology and Evolution, 8(9): 1092–1102. https://doi.org/10.1111/2041-210x.12731
    He, J., Yang, K., Tang, W. J., et al., 2020. The First High-Resolution Meteorological Forcing Dataset for Land Process Studies over China. Scientific Data, 7: 25. https://doi.org/10.1038/s41597-020-0369-y
    Ho, A., Angel, R., Veraart, A. J., et al., 2016. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System. Frontiers in Microbiology, 7: 1285. https://doi.org/10.3389/fmicb.2016.01285
    Hu, W. G., Zhang, Q., Tian, T., et al., 2015. The Microbial Diversity, Distribution, and Ecology of Permafrost in China: A Review. Extremophiles, 19(4): 693–705. https://doi.org/10.1007/s00792-015-0749-y
    Hu, W. G., Zhang, Q., Tian, T., et al., 2016. Characterization of the Prokaryotic Diversity through a Stratigraphic Permafrost Core Profile from the Qinghai-Tibet Plateau. Extremophiles, 20(3): 337–349. https://doi.org/10.1007/s00792-016-0825-y
    Hu, W., Zhang, Q., Tian, T., et al., 2015. Relative Roles of Deterministic and Stochastic Processes in Driving the Vertical Distribution of Bacterial Communities in a Permafrost Core from the Qinghai-Tibet Plateau, China. PLoS One, 10(12): e0145747. https://doi.org/10.1371/journal.pone.0145747
    Hultman, J., Waldrop, M. P., Mackelprang, R., et al., 2015. Multi-Omics of Permafrost, Active Layer and Thermokarst Bog Soil Microbiomes. Nature, 521: 208–212. https://doi.org/10.1038/nature14238
    Jansson, J. K., Taş, N., 2014. The Microbial Ecology of Permafrost. Nature Reviews Microbiology, 12: 414–425. https://doi.org/10.1038/nrmicro3262
    Jiao, S., Yang, Y. F., Xu, Y. Q., et al., 2020. Balance between Community Assembly Processes Mediates Species Coexistence in Agricultural Soil Microbiomes across Eastern China. The ISME Journal, 14: 202–216. https://doi.org/10.1038/s41396-019-0522-9
    Kastman, E. K., Kamelamela, N., Norville, J. W., et al., 2016. Biotic Interactions Shape the Ecological Distributions of Staphylococcus Species. mBio, 7(5): e01157–e01116. https://doi.org/10.1128/mbio.01157-16
    Lennon, J. T., Jones, S. E., 2011. Microbial Seed Banks: The Ecological and Evolutionary Implications of Dormancy. Nature Reviews Microbiology, 9: 119–130. https://doi.org/10.1038/nrmicro2504
    Lipson, D. A., Raab, T. K., Parker, M., et al., 2015. Changes in Microbial Communities along Redox Gradients in Polygonized Arctic Wet Tundra Soils. Environmental Microbiology Reports, 7(4): 649–657. https://doi.org/10.1111/1758-2229.12301
    Little, A. E., Robinson, C. J., Peterson, S. B., et al., 2008. Rules of Engagement: Interspecies Interactions that Regulate Microbial Communities. Annual Review of Microbiology, 62: 375–401. https://doi.org/10.1146/annurev.micro.030608.101423
    Liu, X., Chu, H., Godoy, O., et al., 2024. Positive Associations Fuel Soil Biodiversity and Ecological Networks Worldwide. Proceedings of the National Academy of Sciences of the United States of America, 121(6): e2308769121. https://doi.org/10.1073/pnas.2308769121
    Liu, X., Shi, Y., Yang, T., et al., 2023. QCMI: A Method for Quantifying Putative Biotic Associations of Microbes at the Community Level. iMeta, 2(2): e92. https://doi.org/10.1002/imt2.92
    Luo, Y., Qin, N. S., Pang, Y. S., et al., 2020. Effect of Climate Warming on the Runoff of Source Regions of the Yangtze River: Take Tuotuo River Basin as an Example. Journal of Glaciology and Geocryology, 42(3): 952–964. https://doi.org/10.7522/j.issn.1000-0240.2020.0069
    Mackelprang, R., Burkert, A., Haw, M., et al., 2017. Microbial Survival Strategies in Ancient Permafrost: Insights from Metagenomics. The ISME Journal, 11(10): 2305–2318. https://doi.org/10.1038/ismej.2017.93
    Mehrshad, M., Lopez-Fernandez, M., Sundh, J., et al., 2021. Energy Efficiency and Biological Interactions Define the Core Microbiome of Deep Oligotrophic Groundwater. Nature Communications, 12: 4253. https://doi.org/10.1038/s41467-021-24549-z
    Mondav, R., McCalley, C. K., Hodgkins, S. B., et al., 2017. Microbial Network, Phylogenetic Diversity and Community Membership in the Active Layer across a Permafrost Thaw Gradient. Environmental Microbiology, 19(8): 3201–3218. https://doi.org/10.1111/1462-2920.13809
    Mu, C. C., Abbott, B. W., Norris, A. J., et al., 2020. The Status and Stability of Permafrost Carbon on the Tibetan Plateau. Earth-Science Reviews, 211: 103433. https://doi.org/10.1016/j.earscirev.2020.103433
    Ni, Y. Y., Yang, T., Ma, Y. Y., et al., 2021. Soil pH Determines Bacterial Distribution and Assembly Processes in Natural Mountain Forests of Eastern China. Global Ecology and Biogeography, 30(11): 2164–2177. https://doi.org/10.1111/geb.13373
    Ning, D. L., Yuan, M. T., Wu, L. W., et al., 2020. A Quantitative Framework Reveals Ecological Drivers of Grassland Microbial Community Assembly in Response to Warming. Nature Communications, 11: 4717. https://doi.org/10.1038/s41467-020-18560-z.
    Öhlinger, R., 1996. Soil Sampling and Sample Preparation. In: Schinner, F., Öhlinger, R., Kandeler, E., et al., eds. Methods in Soil Biology. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60966-4_2
    Palmer, J. D., Foster, K. R., 2022. Bacterial Species Rarely Work Together. Science, 376(6593): 581–582. https://doi.org/10.1126/science.abn5093
    Peng, G. S., Wu, J., 2016. Optimal Network Topology for Structural Robustness Based on Natural Connectivity. Physica A: Statistical Mechanics and Its Applications, 443: 212–220. https://doi.org/10.1016/j.physa.2015.09.023
    Ren, B. H., Hu, Y. M., Bu, R. C., 2022. Vertical Distribution Patterns and Drivers of Soil Bacterial Communities across the Continuous Permafrost Region of Northeastern China. Ecological Processes, 11(1): 6. https://doi.org/10.1186/s13717-021-00348-8
    Romdhane, S., Spor, A., Aubert, J., et al., 2022. Unraveling Negative Biotic Interactions Determining Soil Microbial Community Assembly and Functioning. The ISME Journal, 16(1): 296–306. https://doi.org/10.1038/s41396-021-01076-9
    Schloss, P. D., Westcott, S. L., Ryabin, T., et al., 2009. Introducing Mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Cell Systems, 75(23): 7537–7541. https://doi.org/10.1128/aem.01541-09
    Segata, N., Izard, J., Waldron, L., et al., 2011. Metagenomic Biomarker Discovery and Explanation. BMC Pediatrics, 12(6): R60. https://doi.org/10.1186/gb-2011-12-6-r60
    Stachowicz, J. J., 2001. Mutualism, Facilitation, and the Structure of Ecological Communities: Positive Interactions Play a Critical, but Underappreciated, Role in Ecological Communities by Reducing Physical or Biotic Stresses in Existing Habitats and by Creating New Habitats on Which Many Species Depend. BioScience, 51(3): 235–246. https://doi.org/10.1641/0006-3568(2001)051[0235:mfatso]2.0.co;2
    Stegen, J. C., Lin, X. J., Fredrickson, J. K., et al., 2013. Quantifying Community Assembly Processes and Identifying Features That Impose Them. The ISME Journal, 7(11): 2069–2079. https://doi.org/10.1038/ismej.2013.93
    Stegen, J. C., Lin, X., Fredrickson, J. K., et al., 2015. Estimating and Mapping Ecological Processes Influencing Microbial Community Assembly. Frontiers in Microbiology, 6: 370. https://doi.org/10.3389/fmicb.2015.00370
    Steven, B., Pollard, W. H., Greer, C. W., et al., 2008. Microbial Diversity and Activity through a Permafrost/Ground Ice Core Profile from the Canadian High Arctic. Environmental Microbiology, 10(12): 3388–3403. https://doi.org/10.1111/j.1462-2920.2008.01746.x
    Stopnisek, N., Zühlke, D., Carlier, A., et al., 2016. Molecular Mechanisms Underlying the Close Association between Soil Burkholderia and Fungi. The ISME Journal, 10(1): 253–264. https://doi.org/10.1038/ismej.2015.73
    Tang, X. T., Zhang, M., Fang, Z. K., et al., 2023. Changing Microbiome Community Structure and Functional Potential during Permafrost Thawing on the Tibetan Plateau. FEMS Microbiology Ecology, 99(11): fiad117. https://doi.org/10.1093/femsec/fiad117
    Tripathi, B. M., Kim, M., Kim, Y., et al., 2018. Variations in Bacterial and Archaeal Communities along Depth Profiles of Alaskan Soil Cores. Scientific Reports, 8: 504. https://doi.org/10.1038/s41598-017-18777-x
    Vellend, M., 2010. Conceptual Synthesis in Community Ecology. The Quarterly Review of Biology, 85(2): 183–206. https://doi.org/10.1086/652373
    Vellend, M., Srivastava, D. S., Anderson, K. M., et al., 2014. Assessing the Relative Importance of Neutral Stochasticity in Ecological Communities. Oikos, 123(12): 1420–1430. https://doi.org/10.1111/oik.01493
    Waldrop, M. P., Chabot, C. L., Liebner, S., et al., 2023. Permafrost Microbial Communities and Functional Genes are Structured by Latitudinal and Soil Geochemical Gradients. The ISME Journal, 17(8): 1224–1235. https://doi.org/10.1038/s41396-023-01429-6
    Wan, W., Gadd, G. M., Yang, Y., et al., 2021. Environmental Adaptation is Stronger for Abundant rather than Rare Microorganisms in Wetland Soils from the Qinghai-Tibet Plateau. Mol Ecol, 30(10): 2390–2403. https://doi.org/10.1111/mec.15882
    Wang, L., Øien, A., 1986. Determination of Kjeldahl Nitrogen and Exchangeable Ammonium in Soil by the Indophenol Method. Acta Agriculturae Scandinavica, 36(1): 60–70. https://doi.org/10.1080/00015128609435795
    Wang, L., Zhang, D. Y., Kang, L. Y., et al., 2024. Divergent Microbial Phosphorous Acquisition Strategies between Active Layer and Permafrost Deposits on the Tibetan Plateau. Functional Ecology, 38(9): 2015–2026. https://doi.org/10.1111/1365-2435.14612
    Wang, Q., Garrity, G. M., Tiedje, J. M., et al., 2007. Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Mucosal Immunology, 73(16): 5261–5267. https://doi.org/10.1128/aem.00062-07
    Wang, T. H., Yang, D. W., Yang, Y. T., et al., 2020. Permafrost Thawing Puts the Frozen Carbon at Risk over the Tibetan Plateau. Science Advances, 6(19): eaaz3513. https://doi.org/10.1126/sciadv.aaz3513
    Wang, X. J., Yu, Z. Q., Shen, G. F., et al., 2023. Distribution of Microbial Communities in Seasonally Frozen Soil Layers on the Tibetan Plateau and the Driving Environmental Factors. Environmental Science and Pollution Research, 30(1): 1919–1937. https://doi.org/10.1007/s11356-022-22283-7
    Woodcroft, B. J., Singleton, C. M., Boyd, J. A., et al., 2018. Genome-Centric View of Carbon Processing in Thawing Permafrost. Nature, 560: 49–54. https://doi.org/10.1038/s41586-018-0338-1
    Wu, M. H., Chen, S. Y., Chen, J. W., et al., 2021. Reduced Microbial Stability in the Active Layer is Associated with Carbon Loss under Alpine Permafrost Degradation. Proc Natl Acad Sci USA, 118(25): e2025321118. https://doi.org/10.1073/pnas.2025321118
    Wu, X. D., Xu, H. Y., Liu, G. M., et al., 2017. Bacterial Communities in the Upper Soil Layers in the Permafrost Regions on the Qinghai-Tibetan Plateau. Applied Soil Ecology, 120: 81–88. https://doi.org/10.1016/j.apsoil.2017.08.001
    Wu, X., Chauhan, A., Layton, A. C., et al., 2021. Comparative Metagenomics of the Active Layer and Permafrost from Low-Carbon Soil in the Canadian High Arctic. Environmental Science & Technology, 55(18): 12683–12693. https://doi.org/10.1021/acs.est.1c00802
    Wu, Y. C., Fu, C. X., Peacock, C. L., et al., 2023. Cooperative Microbial Interactions Drive Spatial Segregation in Porous Environments. Nature Communications, 14: 4226. https://doi.org/10.1038/s41467-023-39991-4
    Yang, L. Y., Ning, D. L., Yang, Y. F., et al., 2022. Precipitation Balances Deterministic and Stochastic Processes of Bacterial Community Assembly in Grassland Soils. Soil Biology and Biochemistry, 168: 108635. https://doi.org/10.1016/j.soilbio.2022.108635
    Yang, S. Z., Liebner, S., Walz, J., et al., 2021. Effects of a Long-Term Anoxic Warming Scenario on Microbial Community Structure and Functional Potential of Permafrost-Affected Soil. Permafrost and Periglacial Processes, 32(4): 641–656. https://doi.org/10.1002/ppp.2131
    Yang, S. Z., Liebner, S., Winkel, M., et al., 2017. In-Depth Analysis of Core Methanogenic Communities from High Elevation Permafrost-Affected Wetlands. Soil Biology and Biochemistry, 111: 66–77. https://doi.org/10.1016/j.soilbio.2017.03.007
    Zhou, J., Ning, D., 2017. Stochastic Community Assembly: Does It Matter in Microbial Ecology? Microbiology and Molecular Biology Reviews, 81(4): e00002–e00017. https://doi.org/10.1128/mmbr.00002-17
    Zou, D. F., Zhao, L., Sheng, Y., et al., 2017. A New Map of Permafrost Distribution on the Tibetan Plateau. The Cryosphere, 11(6): 2527–2542. https://doi.org/10.5194/tc-11-2527-2017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(55) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return