Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 6
Dec 2024
Turn off MathJax
Article Contents
Kui Han, Xinzhuan Guo, Hanyong Liu, Fengbao Ji. Electrical Conductivity of Multiphase Garnet under High-Temperature and High-Pressure Conditions. Journal of Earth Science, 2024, 35(6): 1849-1859. doi: 10.1007/s12583-024-0062-8
Citation: Kui Han, Xinzhuan Guo, Hanyong Liu, Fengbao Ji. Electrical Conductivity of Multiphase Garnet under High-Temperature and High-Pressure Conditions. Journal of Earth Science, 2024, 35(6): 1849-1859. doi: 10.1007/s12583-024-0062-8

Electrical Conductivity of Multiphase Garnet under High-Temperature and High-Pressure Conditions

doi: 10.1007/s12583-024-0062-8
More Information
  • Corresponding author: Kui Han, kui.han@uni-bayreuth.de
  • Received Date: 15 Mar 2024
  • Accepted Date: 28 Jun 2024
  • Available Online: 26 Dec 2024
  • Issue Publish Date: 30 Dec 2024
  • Mineral mixing, a fundamental process during mantle convection, alters the chemical composition of mantle minerals. However, the impact of this process on the electrical conductivity of mineral assemblages remains poorly understood. We measured the electrical conductivity of three single-phase garnets and their corresponding mixtures at 1.5 GPa and varying temperatures using the impedance spectroscopy within frequency from 10-1 to 106 Hz. The electrical conductivity of dehydrated garnets is primarily controlled by their iron content, exhibiting an activation energy about 1.0 eV, indicative of small polaron conduction. The garnet mixture displays lower electrical conductivities and higher activation energies compared to their single-phase counterparts. This discrepancy of conductivity can be half order of magnitude at high temperatures (> 1 073 K), suggesting formation of resistive grain boundaries during the mixing process. In the mantle transition zones, grain boundary conductivity could exert a limited impact on the bulk conductivity of the interface between the stagnant slab and ambient mantle.

     

  • Electronic Supplementary Materials: Supplementary materials (Figures S1–S2, Table S1) are available in the online version of this article at https://doi.org/10.1007/s12583-024-0062-8.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Amulele, G. M., Lanati, A. W., Clark, S. M., 2022. The Electrical Conductivity of Albite Feldspar: Implications for Oceanic Lower Crustal Sequences and Subduction Zones. American Mineralogist, 107(4): 614–624. https://doi.org/10.2138/am-2021-7836
    Bell, D. R., Ihinger, P. D., Rossman, G. R., 1995. Quantitative Analysis of Trace OH in Garnet and Pyroxenes. American Mineralogist, 80(5/6): 465–474. https://doi.org/10.2138/am-1995-5-607
    Dachs, E., 2006. Heat Capacities and Entropies of Mixing of Pyrope-Grossular (Mg3Al2Si3O12-Ca3Al2Si3O12) Garnet Solid Solutions: A Low-Temperature Calorimetric and a Thermodynamic Investigation. American Mineralogist, 91(5/6): 894–906. https://doi.org/10.2138/am.2006.2005
    Dai, L. D., Karato, S. I., 2009. Electrical Conductivity of Wadsleyite at High Temperatures and High Pressures. Earth and Planetary Science Letters, 287(1/2): 277–283. https://doi.org/10.1016/j.epsl.2009.08.012
    Dai, L. D., Li, H. P., Hu, H. Y., et al., 2008. Experimental Study of Grain Boundary Electrical Conductivities of Dry Synthetic Peridotite under High-Temperature, High-Pressure, and Different Oxygen Fugacity Conditions. Journal of Geophysical Research: Solid Earth, 113(B12): B12211. https://doi.org/10.1029/2008jb005820
    Dai, L. D., Li, H. P., Hu, H. Y., et al., 2012. The Effect of Chemical Composition and Oxygen Fugacity on the Electrical Conductivity of Dry and Hydrous Garnet at High Temperatures and Pressures. Contributions to Mineralogy and Petrology, 163(4): 689–700. https://doi.org/10.1007/s00410-011-0693-5
    Dai, L. D., Li, H. P., Hu, H. Y., et al., 2013. Electrical Conductivity of Alm82Py15Grs3 Almandine-Rich Garnet Determined by Impedance Spec-troscopy at High Temperatures and High Pressures. Tectonophysics, 608: 1086–1093. https://doi.org/10.1016/j.tecto.2013.07.004
    Dai, L. D., Hu, H. Y., Li, H. P., et al., 2014. Influence of Temperature, Pressure, and Chemical Composition on the Electrical Conductivity of Granite. American Mineralogist, 99(7): 1420–1428. https://doi.org/10.2138/am.2014.4692
    Farla, R. J. M., Peach, C. J., Ten Grotenhuis, S. M., 2010. Electrical Conductivity of Synthetic Iron-Bearing Olivine. Physics and Chemistry of Minerals, 37(3): 167–178. https://doi.org/10.1007/s00269-009-0321-3
    Feng, B., Guo, X. Z., 2022. Thermal Conductivity and Thermal Diffusivity of Ferrosilite under High Temperature and High Pressure. Journal of Earth Science, 33(3): 770–777. https://doi.org/10.1007/s12583-021-1574-0
    Fenter, P., Sturchio, N. C., 2004. Mineral-Water Interfacial Structures Revealed by Synchrotron X-Ray Scattering. Progress in Surface Science, 77(5/6/7/8): 171–258. https://doi.org/10.1016/j.progsurf.2004.12.001
    Freer, R., Edwards, A., 1999. An Experimental Study of Ca-(Fe, Mg) Interdiffusion in Silicate Garnets. Contributions to Mineralogy and Petrology, 134(4): 370–379. https://doi.org/10.1007/s004100050491
    Fukao, Y., Obayashi, M., Nakakuki, T., 2009. Stagnant Slab: A Review. Annual Review of Earth and Planetary Sciences, 37: 19–46. https://doi.org/10.1146/annurev.earth.36.031207.124224
    Gasc, J., Brunet, F., Bagdassarov, N., et al., 2011. Electrical Conductivity of Polycrystalline Mg(OH)2 at 2 GPa: Effect of Grain Boundary Hydration-Dehydration. Physics and Chemistry of Minerals, 38(7): 543–556. https://doi.org/10.1007/s00269-011-0426-3
    Geiger, C. A., Rossman, G. R., 2018. IR Spectroscopy and OH- in Silicate Garnet: The Long Quest to Document the Hydrogarnet Substitution. American Mineralogist, 103(3): 384–393. https://doi.org/10.2138/am-2018-6160ccby
    Gerhardt, R., Nowick, A. S., 1986. Grain-Boundary Effect in Ceria Doped with Trivalent Cations: I, Electrical Measurements. Journal of the American Ceramic Society, 69(9): 641–646. https://doi.org/10.1111/j.1151-2916.1986.tb07464.x
    Gregori, G., Merkle, R., Maier, J., 2017. Ion Conduction and Redistribution at Grain Boundaries in Oxide Systems. Progress in Materials Science, 89: 252–305. https://doi.org/10.1016/j.pmatsci.2017.04.009
    Guo, X., Sigle, W., Fleig, J., et al., 2002. Role of Space Charge in the Grain Boundary Blocking Effect in Doped Zirconia. Solid State Ionics, 154/155: 555–561. https://doi.org/10.1016/s0167-2738(02)00491-5
    Guo, X. Z., Yoshino, T., Katayama, I., 2011. Electrical Conductivity Anisotropy of Deformed Talc Rocks and Serpentinites at 3 GPa. Physics of the Earth and Planetary Interiors, 188(1): 69–81. https://doi.org/10.1016/j.pepi.2011.06.012
    Han, K., Clark, S. M., 2021. Review of Calculating the Electrical Conductivity of Mineral Aggregates from Constituent Conductivities. Solid Earth Sciences, 6(2): 111–128. https://doi.org/10.1016/j.sesci.2021.02.003
    Han, K., Guo, X. Z., Zhang, J. F., et al., 2021. Fast Grain-Boundary Ionic Conduction in Multiphase Aggregates as Revealed by Electrical Conductivity Measurements. Contributions to Mineralogy and Petrology, 176(10): 80. https://doi.org/10.1007/s00410-021-01841-1
    Hashin, Z., Shtrikman, S., 1963. A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials. Journal of the Mechanics and Physics of Solids, 11(2): 127–140. https://doi.org/10.1016/0022-5096(63)90060-7
    Hiraga, T., Anderson, I. M., Kohlstedt, D. L., 2004. Grain Boundaries as Reservoirs of Incompatible Elements in the Earth's Mantle. Nature, 427(6976): 699–703. https://doi.org/10.1038/nature02259
    Holzapfel, C., Rubie, D. C., Frost, D. J., et al., 2005. Fe-Mg Interdiffusion in (Mg, Fe)SiO3 Perovskite and Lower Mantle Reequilibration. Science, 309(5741): 1707–1710. https://doi.org/10.1126/science.1111895
    Hu, H. Y., Li, H. P., Dai, L. D., et al., 2013. Electrical Conductivity of Alkali Feldspar Solid Solutions at High Temperatures and High Pressures. Physics and Chemistry of Minerals, 40(1): 51–62. https://doi.org/10.1007/s00269-012-0546-4
    Huang, J. L., Zhao, D. P., 2006. High-Resolution Mantle Tomography of China and Surrounding Regions. Journal of Geophysical Research: Solid Earth, 111(B9): B09305. https://doi.org/10.1029/2005jb004066
    Hui, K. S., Zhang, H., Li, H. P., et al., 2015. Experimental Study on the Electrical Conductivity of Quartz Andesite at High Temperature and High Pressure: Evidence of Grain Boundary Transport. Solid Earth, 6(3): 1037–1043. https://doi.org/10.5194/se-6-1037-2015
    Irifune, T., Tsuchiya, T., 2007. Mineralogy of the Earth—Phase Transitions and Mineralogy of the Lower Mantle. Treatise on Geophysics. Elsevier, Amsterdam. 33–62. https://doi.org/10.1016/b978-044452748-6/00030-4
    Katsura, T., 2022. A Revised Adiabatic Temperature Profile for the Mantle. Journal of Geophysical Research: Solid Earth, 127(2): e2021JB023562. https://doi.org/10.1029/2021jb023562
    Kelbert, A., Schultz, A., Egbert, G., 2009. Global Electromagnetic Induction Constraints on Transition-Zone Water Content Variations. Nature, 460(7258): 1003–1006. https://doi.org/10.1038/nature08257
    Keppler, H., Rauch, M., 2000. Water Solubility in Nominally Anhydrous Minerals Measured by FTIR and 1H MAS NMR: The Effect of Sample Preparation. Physics and Chemistry of Minerals, 27(6): 371–376. https://doi.org/10.1007/s002699900070
    Kiss, Á. K., Rauch, E. F., Lábár, J. L., 2016. Highlighting Material Structure with Transmission Electron Diffraction Correlation Coefficient Maps. Ultramicroscopy, 163: 31–37. https://doi.org/10.1016/j.ultramic.2016.01.006
    Li, X., Liu, L., Liao, X. Y., et al., 2023. Metamorphic Evolution of Garnet Amphibolite from the Yaganbuyang Area in the South Altyn Orogen, West China: Insights from Phase Equilibria Modeling and Geochronology. Journal of Earth Science, 34(3): 640–657. https://doi.org/10.1007/s12583-021-1439-6
    Linckens, J., Tholen, S., 2021. Formation of Ultramylonites in an Upper Mantle Shear Zone, Erro-Tobbio, Italy. Minerals, 11(10): 1036. https://doi.org/10.3390/min11101036
    Liu, H. Y., Yang, X. Z., Karato, S. I., 2023. Small Effect of Partial Melt on Electrical Anomalies in the Asthenosphere. Science Advances, 9(13): eabq7884. https://doi.org/10.1126/sciadv.abq7884
    Liu, H. Y., Zhu, Q., Yang, X. Z., 2019. Electrical Conductivity of OH-Bearing Omphacite and Garnet in Eclogite: The Quantitative Dependence on Water Content. Contributions to Mineralogy and Petrology, 174(7): 57. https://doi.org/10.1007/s00410-019-1593-3
    Liu, J., Yuan, L. L., Yang, Z. L., 2022. Geochronology and Geochemistry of Mesozoic Mafic Intrusive Rocks in Zhongtiao Mountain Area: Charac-terizing Lithospheric Mantle of Southern North China Craton. Earth Science, 47(4): 1271–1294. https://doi.org/10.3799/dqkx.2021.104 (in Chinese with English Abstract)
    Luo, X., Xia, Q. X., Zheng, Y. F., et al., 2022. An Experimental Study of Partial Melting of Metafelsic Rocks: Constraints on the Feature of Anatectic Melts and the Origin of Garnets in Collisional Orogens. Journal of Earth Science, 33(3): 753–769. https://doi.org/10.1007/s12583-021-1547-3
    Marquardt, K., Faul, U. H., 2018. The Structure and Composition of Olivine Grain Boundaries: 40 Years of Studies, Status and Current Developments. Physics and Chemistry of Minerals, 45(2): 139–172. https://doi.org/10.1007/s00269-017-0935-9
    Nagurney, A. B., Caddick, M. J., Pattison, D. R. M., et al., 2021. Preferred Orientations of Garnet Porphyroblasts Reveal Previously Cryptic Templating during Nucleation. Scientific Reports, 11: 6869. https://doi.org/10.1038/s41598-021-85525-7
    Peng, Z. R., Meiners, T., Lu, Y. F., et al., 2022. Quantitative Analysis of Grain Boundary Diffusion, Segregation and Precipitation at a Sub-Nanometer Scale. Acta Materialia, 225: 117522. https://doi.org/10.1016/j.actamat.2021.117522
    Pommier, A., Kohlstedt, D. L., Hansen, L. N., et al., 2018. Transport Properties of Olivine Grain Boundaries from Electrical Conductivity Experiments. Contributions to Mineralogy and Petrology, 173(5): 41. https://doi.org/10.1007/s00410-018-1468-z
    Roberts, J. J., Tyburczy, J. A., 1991. Frequency Dependent Electrical Properties of Polycrystalline Olivine Compacts. Journal of Geophysical Research: Solid Earth, 96(B10): 16205–16222. https://doi.org/10.1029/91jb01574
    Roberts, J. J., Tyburczy, J. A., 1999. Partial-Melt Electrical Conductivity: Influence of Melt Composition. Journal of Geophysical Research: Solid Earth, 104(B4): 7055–7065. https://doi.org/10.1029/1998jb900111
    Romano, C., Poe, B. T., Kreidie, N., et al., 2006. Electrical Conductivities of Pyrope-Almandine Garnets up to 19 GPa and 1 700 ℃. American Mine-ralogist, 91(8/9): 1371–1377. https://doi.org/10.2138/am.2006.1983
    Salje, E. K. H., 2007. An Empirical Scaling Model for Averaging Elastic Properties Including Interfacial Effects. American Mineralogist, 92(2/3): 429–432. https://doi.org/10.2138/am.2007.2472
    Schmid, C., van der Lee, S., Giardini, D., 2006. Correlated Shear and Bulk Moduli to 1 400  km beneath the Mediterranean Region. Physics of the Earth and Planetary Interiors, 159(3/4): 213–224. https://doi.org/10.1016/j.pepi.2006.07.003
    Shirpour, M., Rahmati, B., Sigle, W., et al., 2012. Dopant Segregation and Space Charge Effects in Proton-Conducting BaZrO3 Perovskites. The Journal of Physical Chemistry C, 116(3): 2453–2461. https://doi.org/10.1021/jp208213x
    Stixrude, L., Lithgow-Bertelloni, C., 2012. Geophysics of Chemical Heterogeneity in the Mantle. Annual Review of Earth and Planetary Sciences, 40(1): 569–595. https://doi.org/10.1146/annurev.earth.36.031207.124244
    Tarits, P., Hautot, S., Perrier, F., 2004. Water in the Mantle: Results from Electrical Conductivity beneath the French Alps. Geophysical Research Letters, 31(6): L06612. https://doi.org/10.1029/2003gl019277
    Vahidi, H., Syed, K., Guo, H. M., et al., 2021. A Review of Grain Boundary and Heterointerface Characterization in Polycrystalline Oxides by (Scanning) Transmission Electron Microscopy. Crystals, 11(8): 878. https://doi.org/10.3390/cryst11080878
    van Keken, P. E., Hauri, E. H., Ballentine, C. J., 2002. Mantle Mixing: The Generation, Preservation, and Destruction of Chemical Heterogeneity. Annual Review of Earth and Planetary Sciences, 30: 493–525. https://doi.org/10.1146/annurev.earth.30.091201.141236
    Wada, I., Behn, M. D., He, J. H., 2011. Grain-Size Distribution in the Mantle Wedge of Subduction Zones. Journal of Geophysical Research: Solid Earth, 116(B10): B10203. https://doi.org/10.1029/2011jb008294
    Waff, H. S., 1974. Theoretical Considerations of Electrical Conductivity in a Partially Molten Mantle and Implications for Geothermometry. Journal of Geophysical Research, 79(26): 4003–4010. https://doi.org/10.1029/jb079i026p04003
    Wang, D. J., Yu, Y. J., Zhou, Y. S., 2014. Electrical Conductivity Anisotropy in Alkali Feldspar at High Temperature and Pressure. High Pressure Research, 34(3): 297–308. https://doi.org/10.1080/08957959.2014.913042
    Wang, W. Z., Xu, Y. H., Sun, D. Y., et al., 2020. Velocity and Density Characteristics of Subducted Oceanic Crust and the Origin of Lower-Mantle Heterogeneities. Nature Communications, 11: 64. https://doi.org/10.1038/s41467-019-13720-2
    Wood, B. J., Kiseeva, E. S., Matzen, A. K., 2013. Garnet in the Earth's Mantle. Elements, 9(6): 421–426. https://doi.org/10.2113/gselements.9.6.421
    Xu, Y. S., Shankland, T. J., 1999. Electrical Conductivity of Orthopyroxene and Its High Pressure Phases. Geophysical Research Letters, 26(17): 2645–2648. https://doi.org/10.1029/1999gl008378
    Xue, Q. N., Huang, X. W., Zhang, J. X., et al., 2019. Grain Boundary Segregation and Its Influences on Ionic Conduction Properties of Scandia Doped Zirconia Electrolytes. Journal of Rare Earths, 37(6): 645–651. https://doi.org/10.1016/j.jre.2018.11.006
    Yang, X. Z., McCammon, C., 2012. Fe3+-Rich Augite and High Electrical Conductivity in the Deep Lithosphere. Geology, 40(2): 131–134. https://doi.org/10.1130/g32725.1
    Yoshino, T., Nishi, M., Matsuzaki, T., et al., 2008. Electrical Conductivity of Majorite Garnet and Its Implications for Electrical Structure in the Mantle Transition Zone. Physics of the Earth and Planetary Interiors, 170(3/4): 193–200. https://doi.org/10.1016/j.pepi.2008.04.009
    Yoshino, T., Shimojuku, A., Shan, S. M., et al., 2012. Effect of Temperature, Pressure and Iron Content on the Electrical Conductivity of Olivine and Its High-Pressure Polymorphs. Journal of Geophysical Research: Solid Earth, 117(B8): 102. https://doi.org/10.1029/2011jb008774
    Yu, P. P., Ding, W., Zeng, C. Y., et al., 2023. Episodic Magmatism and Continental Reworking in the Yunkai Domain, South China. Earth Science, 48(9): 3205–3220. https://doi.org/10.3799/dqkx.2023.078 (in Chinese with English Abstract)
    Zhang, B. H., Yoshino, T., 2016. Effect of Temperature, Pressure and Iron Content on the Electrical Conductivity of Orthopyroxene. Contributions to Mineralogy and Petrology, 171(12): 102. https://doi.org/10.1007/s00410-016-1315-z
    Zhang, B. H., Yoshino, T., Zhao, C. C., 2019. The Effect of Water on Fe-Mg Interdiffusion Rates in Ringwoodite and Implications for the Electrical Conductivity in the Mantle Transition Zone. Journal of Geophysical Research: Solid Earth, 124(3): 2510–2524. https://doi.org/10.1029/2018jb016415
    Zhang, J., Chen, X. B., Yin, X. K., et al., 2022. 3-D AMT Array Exploration in the Selaha Fault and Adjacent Area. Earth Science, 47(3): 856–866. https://doi.org/10.3799/dqkx.2022.060 (in Chinese with English Abstract)
    Zhang, X. B., Zhang, P. H., He, M. X., et al., 2023. Crustal Electrical Structure of the Wuwei Basin, Lower Yangtze Region of China, and Its Geological Implications. Journal of Earth Science, 34(6): 1744–1757. https://doi.org/10.1007/s12583-022-1682-5
    Zhang, Y. H., Weng, A. H., Li, S. W., et al., 2020. Electrical Conductivity in the Mantle Transition Zone beneath Eastern China Derived from L1-Norm C-Responses. Geophysical Journal International, 221(2): 1110–1124. https://doi.org/10.1093/gji/ggaa059
    Zhou, C. A., Song, S. G., 2023. Post-Collision Magmatism and Continental Crust Growth in Continental Orogenic Belt: An Example from North Qaidam Ultrahigh-Pressure Metamorphic Belt. Earth Science, 48(12): 4481–4494. https://doi.org/10.3799/dqkx.2022.117 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views(61) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return