Citation: | Jiali Fu, Xinqian He, Zhaochu Hu, Shuo Yin, Jian Ma, Kaiyun Chen, Wen Zhang. New Potential Barite Reference Materials for LA-MC-ICP-MS Sulfur Isotope Analysis with Application to Hydrothermal Barite in the Huayangchuan Deposit, Western China. Journal of Earth Science, 2025, 36(1): 1-10. doi: 10.1007/s12583-024-0065-5 |
Sulfur isotopes of S-bearing materials are powerful tools to trace various geological processes and sulfur sources in earth sciences, especially in ore deposits where sulfide-sulfate pair coprecipitates widely. However,
Bao, Z. A., Chen, K. Y., Zong, C. L., et al., 2021. TC1725: A Proposed Chalcopyrite Reference Material for LA-MC-ICP-MS Sulfur Isotope Determination. Journal of Analytical Atomic Spectrometry, 36(8): 1657–1665. https://doi.org/10.1039/D1JA00168J |
Brand, W. A., Coplen, T. B., Vogl, J., et al., 2014. Assessment of International Reference Materials for Isotope-Ratio Analysis (IUPAC Technical Report). Pure and Applied Chemistry, 86(3): 425–467. https://doi.org/10.1515/pac-2013-1023 |
Chen, K. Y., Bao, Z. A., Liang, P., et al., 2022. Preparation of Sulfur-Bearing Reference Materials for in situ Sulfur Isotope Measurements Using Laser Ablation Multicollector Inductively Coupled Plasma-Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 188: 106344. https://doi.org/10.1016/j.sab.2021.106344 |
Chen, L., Chen, K. Y., Bao, Z. A., et al., 2017. Preparation of Standards for in situ Sulfur Isotope Measurement in Sulfides Using Femtosecond Laser Ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 32(1): 107–116. https://doi.org/10.1039/C6JA00270F |
Chen, L., Liu, Y., Li, Y., et al., 2021. New Potential Pyrrhotite and Pentlandite Reference Materials for Sulfur and Iron Isotope Microanalysis. Journal of Analytical Atomic Spectrometry, 36(7): 1431–1440. https://doi.org/10.1039/D1JA00029B |
Chen, Y., Chen, L., Tang, G. Q., et al., 2023. A Quantity Chalcopyrite Reference Material for in situ Sulfur Isotope Analysis. Atomic Spectroscopy, 44(3): 131–141 doi: 10.46770/AS.2023.141 |
Craddock, P. R., Rouxel, O. J., Ball, L. A., et al., 2008. Sulfur Isotope Measurement of Sulfate and Sulfide by High-Resolution MC-ICP-MS. Chemical Geology, 253(3/4): 102–113. https://doi.org/10.1016/j.chemgeo.2008.04.017 |
Ding, T. P., Valkiers, S., Kipphardt, H., et al., 2001. Calibrated Sulfur Isotope Abundance Ratios of Three IAEA Sulfur Isotope Reference Materials and V-CDT with a Reassessment of the Atomic Weight of Sulfur. Geochimica et Cosmochimica Acta, 65(15): 2433–2437. https://doi.org/10.1016/S0016-7037(01)00611-1 |
Feng, Y. T., Zhang, W., Hu, Z. C., et al., 2018. Development of Sulfide Reference Materials for in situ Platinum Group Elements and S-Pb Isotope Analyses by LA-(MC)-ICP-MS. Journal of Analytical Atomic Spectrometry, 33(12): 2172–2183. https://doi.org/10.1039/C8JA00305J |
Fu, J. L., Hu, Z. C., Li, J. W., et al., 2017. Accurate Determination of Sulfur Isotopes (δ33S and δ34S) in Sulfides and Elemental Sulfur by Femtosecond Laser Ablation MC-ICP-MS with Non-Matrix Matched Calibration. Journal of Analytical Atomic Spectrometry, 32(12): 2341–2351. https://doi.org/10.1039/C7JA00282C |
Fu, J. L., Hu, Z. C., Zhang, W., et al., 2016. In Situ Sulfur Isotopes (δ34S and δ33S) Analyses in Sulfides and Elemental Sulfur Using High Sensitivity Cones Combined with the Addition of Nitrogen by Laser Ablation MC-ICP-MS. Analytica Chimica Acta, 911: 14–26. https://doi.org/10.1016/j.aca.2016.01.026 |
Gilbert, S. E., 2015. Development of Analytical Methods and Standard Reference Materials for Analysis of Trace Elements and Isotopic Ratios in Sulphides: [Dissertation]. University of Tasmania, Tasmania |
Gilbert, S. E., Danyushevsky, L. V., Rodemann, T., et al., 2014. Optimisation of Laser Parameters for the Analysis of Sulphur Isotopes in Sulphide Minerals by Laser Ablation ICP-MS. Journal of Analytical Atomic Spectrometry, 29(6): 1042–1051. https://doi.org/10.1039/c4ja00011k |
Halas, S., Szaran, J., 2001. Improved Thermal Decomposition of Sulfates to SO2 and Mass Spectrometric Determination of δ34S of IAEA SO-5, IAEA SO-6 and NBS-127 Sulfate Standards. Rapid Communications in Mass Spectrometry, 15(17): 1618–1620. https://doi.org/10.1002/rcm.416 |
Hoefs, J., 1997. Stable Isotope Geochemistry. Springer, Berlin Heidelberg. https://doi.org/10.1007/978-3-662-03377-7 |
Huang, H., Wang, K. X., Cuney, M., et al., 2022. Mesozoic Magmatic and Hydrothermal Uranium Mineralization in the Huayangchuan Carbonatite-Hosted U-Nb-Polymetallic Deposit, North Qinling Orogen (Central China): Evidence from Uraninite Chemical and Isotopic Compositions. Ore Geology Reviews, 146: 104958. https://doi.org/10.1016/j.oregeorev.2022.104958 |
Kozdon, R., Kita, N. T., Huberty, J. M., et al., 2010. In situ Sulfur Isotope Analysis of Sulfide Minerals by SIMS: Precision and Accuracy, with Application to Thermometry of ∼3.5 Ga Pilbara Cherts. Chemical Geology, 275(3/4): 243–253. https://doi.org/10.1016/j.chemgeo.2010.05.015 |
Labidi, J., Cartigny, P., Moreira, M., 2013. Non-Chondritic Sulphur Isotope Composition of the Terrestrial Mantle. Nature, 501(7466): 208–211. |
Li, B., Wiedenbeck, M., Couffignal, F., et al., 2024. Barite, Anhydrite and Gypsum Reference Materials for in situ Oxygen and Sulfur Isotope Ratio Measurements. Geostandards and Geoanalytical Research, 48(1): 179–205. https://doi.org/10.1111/ggr.12533 |
Li, R. C., Xia, X. P., Yang, S. H., et al., 2019. Off-Mount Calibration and One New Potential Pyrrhotite Reference Material for Sulfur Isotope Measurement by Secondary Ion Mass Spectrometry. Geostandards and Geoanalytical Research, 43(1): 177–187. https://doi.org/10.1111/ggr.12244 |
Lin, J., Yang, A., Lin, R., et al., 2023. Review on in situ Isotopic Analysis by LA-MC-ICP-MS. Journal of Earth Science, 34(6): 1663–1691. https://doi.org/10.1007/s12583-023-2002-4 |
Lu, J., Chen, W., Jiang, S. Y., 2021. In-situ Sulfur Isotopic Analysis of Sulfate by Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC-ICP-MS). Atomic Spectroscopy, 41(6): 223–233. https://doi.org/10.46770/as.2020.208 |
Lv, N., Bao, Z. A., Nie, X. J., et al., 2024. Development of a Matrix-Matched Barite Reference Material (NWU-Brt) for Calibration of in situ S Isotope Measurements by Laser Ablation Multi-Collector Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 48(2): 411–421. https://doi.org/10.1111/ggr.12544 |
Magnall, J. M., Gleeson, S. A., Stern, R. A., et al., 2016. Open System Sulphate Reduction in a Diagenetic Environment-Isotopic Analysis of Barite (δ34S and δ18O) and Pyrite (δ34S) from the Tom and Jason Late Devonian Zn-Pb-Ba Deposits, Selwyn Basin, Canada. Geochimica et Cosmochimica Acta, 180: 146–163. https://doi.org/10.1016/j.gca.2016.02.015 |
Mandeville, C. W., 2010. Sulfur: A Ubiquitous and Useful Tracer in Earth and Planetary Sciences. Elements, 6(2): 75–80. https://doi.org/10.2113/gselements.6.2.75 |
Mann, J. L., Kelly, W. R., 2005. Measurement of Sulfur Isotope Composition (δ34S) by Multiple-Collector Thermal Ionization Mass Spectrometry Using a 33S-36S Double Spike. Rapid Communications in Mass Spectrometry, 19(23): 3429–3441. https://doi.org/10.1002/rcm.2213 |
Muller, É., Philippot, P., Rollion-Bard, C., et al., 2016. Multiple Sulfur-Isotope Signatures in Archean Sulfates and Their Implications for the Chemistry and Dynamics of the Early Atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 113(27): 7432–7437. https://doi.org/10.1073/pnas.1520522113 |
Paris, G., Sessions, A. L., Subhas, A. V., et al., 2013. MC-ICP-MS Measurement of δ34S and ∆33S in Small Amounts of Dissolved Sulfate. Chemical Geology, 345: 50–61. https://doi.org/10.1016/j.chemgeo.2013.02.022 |
Park, Y. R., Ripley, E. M., 1998. Sulfur Isotopic Analysis of 3–10 Micromole Samples of SO2 from Sulfides, Sulfates, and Whole Rocks Using Conventional Combustion and Mass Spectrometric Techniques. Chemical Geology, 150(1/2): 191–195. https://doi.org/10.1016/S0009-2541(98)00064-3 |
Pribil, M. J., Ridley, W. I., Emsbo, P., 2015. Sulfate and Sulfide Sulfur Isotopes (δ34S and δ33S) Measured by Solution and Laser Ablation MC-ICP-MS: An Enhanced Approach Using External Correction. Chemical Geology, 412: 99–106. https://doi.org/10.1016/j.chemgeo.2015.07.014 |
Pritzkow, W., Vogl, J., Köppen, R., et al., 2005. Determination of Sulfur Isotope Abundance Ratios for SI-Traceable Low Sulfur Concentration Measurements in Fossil Fuels by ID-TIMS. International Journal of Mass Spectrometry, 242(2/3): 309–318. https://doi.org/10.1016/j.ijms.2004.10.024 |
Riciputi, L. R., Paterson, B. A., Ripperdan, R. L., 1998. Measurement of Light Stable Isotope Ratios by SIMS: Matrix Effects for Oxygen, Carbon, and Sulfur Isotopes in Minerals. International Journal of Mass Spectrometry, 178(1/2): 81–112. https://doi.org/10.1016/s1387-3806(98)14088-5 |
Seal, R. R., 2006. Sulfur Isotope Geochemistry of Sulfide Minerals. Reviews in Mineralogy and Geochemistry, 61(1): 633–677. https://doi.org/10.2138/rmg.2006.61.12 |
Seal, R. R., Alpers, C. N., Rye, R. O., 2000. Stable Isotope Systematics of Sulfate Minerals. Reviews in Mineralogy and Geochemistry, 40(1): 541–602. https://doi.org/10.2138/rmg.2000.40.12 |
Strauss, H., 1997. The Isotopic Composition of Sedimentary Sulfur through Time. Palaeogeography, Palaeoclimatology, Palaeoecology, 132(1/2/3/4): 97–118. https://doi.org/10.1016/S0031-0182(97)00067-9 |
Studley, S. A., Ripley, E. M., Elswick, E. R., et al., 2002. Analysis of Sulfides in Whole Rock Matrices by Elemental Analyzer-Continuous Flow Isotope Ratio Mass Spectrometry. Chemical Geology, 192(1/2): 141–148. https://doi.org/10.1016/S0009-2541(02)00162-6 |
Sylvester, P., 2008. Matrix Effects in Laser Ablation ICP-MS, Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada, 40: 67–78 |
Ushikubo, T., Williford, K. H., Farquhar, J., et al., 2014. Development of in Situ Sulfur Four-Isotope Analysis with Multiple Faraday Cup Detectors by SIMS and Application to Pyrite Grains in a Paleoproterozoic Glaciogenic Sandstone. Chemical Geology, 383: 86–99. https://doi.org/10.1016/j.chemgeo.2014.06.006 |
Yun, M., Wadleigh, M. A., Pye, A., 2004. Direct Measurement of Sulphur Isotopic Composition in Lichens by Continuous Flow-Isotope Ratio Mass Spectrometry. Chemical Geology, 204(3/4): 369–376. https://doi.org/10.1016/j.chemgeo.2003.11.008 |
Zhang, W., Hu, Z. C., Liu, Y. S., 2020. Iso-Compass: New Freeware Software for Isotopic Data Reduction of LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 35(6): 1087–1096. https://doi.org/10.1039/D0JA00084A |
Zhu, Z. Y., Jiang, S. Y., Ciobanu, C. L., et al., 2017. Sulfur Isotope Fractionation in Pyrite during Laser Ablation: Implications for Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry Mapping. Chemical Geology, 450: 223–234. https://doi.org/10.1016/j.chemgeo.2016.12.037 |