Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 4
Aug 2025
Turn off MathJax
Article Contents
Jinting Kang, Xuqi Chen, Xi Deng, Yuan Fang, Haichuan Jiang, Chengyihong Liu, Cuihua Luo, Xing Li, Yuchao Lin, Zhaoqi Ren, Jiaru Sheng, Xue Tang, Liyi Xu, Jinyi Yan, Yaqi Zhang, Zhengyu Hou, Fei Wu, Huimin Yu, Fang Huang. Recommendations of Stable Mg, Si, V, Fe, Cu, Zn, Rb, Sr, Ag, Cd, Ba, and U Isotope Compositions for Multiple Geological References. Journal of Earth Science, 2025, 36(4): 1408-1424. doi: 10.1007/s12583-024-0145-6
Citation: Jinting Kang, Xuqi Chen, Xi Deng, Yuan Fang, Haichuan Jiang, Chengyihong Liu, Cuihua Luo, Xing Li, Yuchao Lin, Zhaoqi Ren, Jiaru Sheng, Xue Tang, Liyi Xu, Jinyi Yan, Yaqi Zhang, Zhengyu Hou, Fei Wu, Huimin Yu, Fang Huang. Recommendations of Stable Mg, Si, V, Fe, Cu, Zn, Rb, Sr, Ag, Cd, Ba, and U Isotope Compositions for Multiple Geological References. Journal of Earth Science, 2025, 36(4): 1408-1424. doi: 10.1007/s12583-024-0145-6

Recommendations of Stable Mg, Si, V, Fe, Cu, Zn, Rb, Sr, Ag, Cd, Ba, and U Isotope Compositions for Multiple Geological References

doi: 10.1007/s12583-024-0145-6
More Information
  • Corresponding author: Fang Huang, fhuang@ustc.edu.cn
  • Received Date: 09 Jul 2024
  • Accepted Date: 14 Dec 2024
  • Available Online: 05 Aug 2025
  • Issue Publish Date: 30 Aug 2025
  • The Metal Stable Isotope Geochemistry Laboratory (MSIGL) at the University of Science and Technology of China has developed state-of-the-art analytical methods for twelve stable isotope systems, including Mg, Si, V, Fe, Cu, Zn, Rb, Sr, Ag, Cd, Ba, and U. Geological and biological samples were first digested by acid dissolution or alkali dissolution. The target element was subsequently purified by the column chromatography method. A Neptune Plus MC-ICP-MS was used to measure isotope compositions and the isotope bias caused during measurements was calibrated by standard bracketing and/or the double spike method. The analytical procedure was carefully checked to ensure the high precision and accuracy of the data. Here, we summarized the protocol of these established methods and compiled the standard data measured at our lab as well as those reported in literature. This comprehensive dataset can serve as a reliable benchmark for calibration, method validation, and quality assurance in metal stable isotope analyses.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Abouchami, W., Galer, S. J. G., Horner, T. J., et al., 2013. A Common Reference Material for Cadmium Isotope Studies-NIST SRM 3108. Geostandards and Geoanalytical Research, 37(1): 5–17. https://doi.org/10.1111/j.1751-908X.2012.00175.x
    An, Y. J., Huang, J. -X., Griffin, W. L., et al., 2017. Isotopic Composition of Mg and Fe in Garnet Peridotites from the Kaapvaal and Siberian Cratons. Geochimica et Cosmochimica Acta, 200: 167–185. https://doi.org/10.1016/j.gca.2016.11.041
    An, Y. J., Wu, F., Xiang, Y. X., et al., 2014. High-Precision Mg Isotope Analyses of Low-Mg Rocks by MC-ICP-MS. Chemical Geology, 390: 9–21. https://doi.org/10.1016/j.chemgeo.2014.09.014
    Andrews, M. G., Jacobson, A. D., Lehn, G. O., et al., 2016. Radiogenic and Stable Sr Isotope Ratios (87Sr/86Sr, δ88/86Sr) as Tracers of Riverine Cation Sources and Biogeochemical Cycling in the Milford Sound Region of Fiordland, New Zealand. Geochimica et Cosmochimica Acta, 173: 284–303. https://doi.org/10.1016/j.gca.2015.10.005
    Archer, C., Vance, D., 2004. Mass Discrimination Correction in Multiple-Collector Plasma Source Mass Spectrometry: An Example Using Cu and Zn Isotopes. Journal of Analytical Atomic Spectrometry, 19(5): 656–665. https://doi.org/10.1039/B315853E
    Baker, J., Bizzarro, M., Wittig, N., et al., 2005. Early Planetesimal Melting from an Age of 4.5662 Gyr for Differentiated Meteorites. Nature, 436(7054): 1127–1131. https://doi.org/10.1038/nature03882
    Bao, Z. A., Huang, K. J., Huang, T. Z., et al., 2019a. Precise Magnesium Isotope Analyses of High-K and Low-Mg Rocks by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 34(5): 940–953. https://doi.org/10.1039/C9JA00002J
    Bao, Z. A., Zong, C. L., Huang, K. J., et al., 2019b. Determination of Mg Isotope Ratios without Column Chromatography for Carbonates Using Sulphuric Acid and MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 34(12): 2469–2475. https://doi.org/10.1039/C9JA00295B
    Bao, Z. A., Zong, C. L., Chen, K. Y., et al., 2020. Chromatographic Purification of Ca and Mg from Biological and Geological Samples for Isotope Analysis by MC-ICP-MS. International Journal of Mass Spectrometry, 448: 116268. https://doi.org/10.1016/j.ijms.2019.116268
    Bizzarro, M., Paton, C., Larsen, K., et al., 2011. High-Precision Mg-Isotope Measurements of Terrestrial and Extraterrestrial Material by HR-MC-ICPMS—Implications for the Relative and Absolute Mg-Isotope Composition of the Bulk Silicate Earth. Journal of Analytical Atomic Spectrometry, 26(3): 565–577. https://doi.org/10.1039/C0JA00190B
    Borovička, J., Ackerman, L., Rejšek, J., 2021. Cadmium Isotopic Composition of Biogenic Certified Reference Materials Determined by Thermal Ionization Mass Spectrometry with Double Spike Correction. Talanta, 221: 121389. https://doi.org/10.1016/j.talanta.2020.121389
    Bourdon, B., Tipper, E. T., Fitoussi, C., et al., 2010. Chondritic Mg Isotope Composition of the Earth. Geochimica et Cosmochimica Acta, 74(17): 5069–5083. https://doi.org/10.1016/j.gca.2010.06.008
    Brazier, J. M., Schmitt, A. D., Gangloff, S., et al., 2020. Multi-Isotope Approach (δ44/40Ca, δ88/86Sr and 87Sr/86Sr) Provides Insights into Rhizolith Formation Mechanisms in Terrestrial Sediments of Nussloch (Germany). Chemical Geology, 545: 119641. https://doi.org/10.1016/j.chemgeo.2020.119641
    Chao, H. C., You, C. F., Liu, H. C., et al., 2015. Evidence for Stable Sr Isotope Fractionation by Silicate Weathering in a Small Sedimentary Watershed in Southwestern Taiwan. Geochimica et Cosmochimica Acta, 165: 324–341. https://doi.org/10.1016/j.gca.2015.06.006
    Charlier, B. L. A., Nowell, G. M., Parkinson, I. J., et al., 2012. High Temperature Strontium Stable Isotope Behaviour in the Early Solar System and Planetary Bodies. Earth and Planetary Science Letters, 329: 31–40. https://doi.org/10.1016/j.epsl.2012.02.008
    Chen, D. D., Cheng, K., Liu, T. X., et al., 2023. Novel Insight into Microbially Mediated Nitrate-Reducing Fe(Ⅱ) Oxidation by Acidovorax Sp. Strain BoFeN1 Using Dual N-O Isotope Fractionation. Environmental Science & Technology, 57(33): 12546–12555. https://doi.org/10.1021/acs.est.3c02329
    Chen, J. B., Louvat, P., Gaillardet, J., et al., 2009. Direct Separation of Zn from Dilute Aqueous Solutions for Isotope Composition Determination Using Multi-Collector ICP-MS. Chemical Geology, 259(3/4): 120–130. https://doi.org/10.1016/j.chemgeo.2008.10.040
    Chen, S., Liu, Y. C., Hu, J. Y., et al., 2016. Zinc Isotopic Compositions of NIST SRM 683 and Whole-Rock Reference Materials. Geostandards and Geoanalytical Research, 40(3): 417–432. https://doi.org/10.1111/j.1751-908X.2015.00377.x
    Chen, X. Q., Zeng, Z., Yu, H. M., et al., 2022. Precise Measurements of δ88/86Sr for Twenty Geological Reference Materials by Double-Spike MC-ICP-MS. International Journal of Mass Spectrometry, 479: 116883. https://doi.org/10.1016/j.ijms.2022.116883
    Chen, X. Y., Lapen, T. J., Chafetz, H. S., 2017. Accurate and Precise Silicon Isotope Analysis of Sulfur- and Iron-Rich Samples by MC-ICP-MS. Geostandards and Geoanalytical Research, 41(3): 427–435. https://doi.org/10.1111/ggr.12158
    Choi, M. S., Ryu, J. S., Lee, S. W., et al., 2012. A Revisited Method for Mg Purification and Isotope Analysis Using Cool-Plasma MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 27(11): 1955–1959. https://doi.org/10.1039/C2JA30191A
    Craddock, P. R., Dauphas, N., 2011. Iron Isotopic Compositions of Geological Reference Materials and Chondrites. Geostandards and Geoanalytical Research, 35(1): 101–123. https://doi.org/10.1111/j.1751-908X.2010.00085.x
    Devos, G., Moynier, F., Creech, J., et al., 2024. Cadmium Isotope Composition of the Earth's Mantle Inferred from Analysis of Oceanic Basalts and Komatiites. Chemical Geology, 650: 121996. https://doi.org/10.1016/j.chemgeo.2024.121996
    Du, D. H., Wang, X. L., Yang, T., et al., 2017. Origin of Heavy Fe Isotope Compositions in High-Silica Igneous Rocks: A Rhyolite Perspective. Geochimica et Cosmochimica Acta, 218: 58–72. https://doi.org/10.1016/j.gca.2017.09.014
    Fang, Y., Wen, Q. Y., Xiao, Z. C., et al., 2024. High-Precision Measurement of Ag Isotopes for Silicate Rocks by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 39(7): 1750–1758. https://doi.org/10.1039/D3JA00424D
    Fitoussi, C., Bourdon, B., Kleine, T., et al., 2009. Si Isotope Systematics of Meteorites and Terrestrial Peridotites: Implications for Mg/Si Fractionation in the Solar Nebula and for Si in the Earth's Core. Earth and Planetary Science Letters, 287(1/2): 77–85. https://doi.org/10.1016/j.epsl.2009.07.038
    Georg, R. B., Reynolds, B. C., Frank, M., et al., 2006. Mechanisms Controlling the Silicon Isotopic Compositions of River Waters. Earth and Planetary Science Letters, 249(3/4): 290–306. https://doi.org/10.1016/j.epsl.2006.07.006
    Gong, H. M., Guo, P. Y., Chen, S., et al., 2020. A Re-Assessment of Nickel-Doping Method in Iron Isotope Analysis on Rock Samples Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Acta Geochimica, 39(3): 355–364. https://doi.org/10.1007/s11631-019-00392-4
    Gong, Y. Z., Zeng, Z., Cheng, W. H., et al., 2020. Barium Isotopic Fractionation during Strong Weathering of Basalt in a Tropical Climate. Environment International, 143: 105896. https://doi.org/10.1016/j.envint.2020.105896
    Guan, Q. Y., Sun, Y. L., Zhang, Z. F., et al., 2020. Determination of δ44/40Ca and δ56/54Fe in Geological Materials Combined with a Simplified Method for Their Separation Using a Single TODGA Resin Column. Geostandards and Geoanalytical Research, 44(4): 669–683. https://doi.org/10.1111/ggr.12350
    Guo, H. H., Xia, Y., Bai, R. X., et al., 2020. Experiments on Cu-Isotope Fractionation between Chlorine-Bearing Fluid and Silicate Magma: Implications for Fluid Exsolution and Porphyry Cu Deposits. National Science Review, 7(8): 1319–1330. https://doi.org/10.1093/nsr/nwz221
    Guo, R., Yu, H. M., Fang, S. B., et al., 2023. Iron, Copper and Zinc Isotope Compositions of Biological Reference Materials Determined by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 38(11): 2365–2377. https://doi.org/10.1039/D3JA00281K
    He, Y. S., Ke, S., Teng, F. Z., et al., 2015. High-Precision Iron Isotope Analysis of Geological Reference Materials by High-Resolution MC-ICP-MS. Geostandards and Geoanalytical Research, 39(3): 341–356. https://doi.org/10.1111/j.1751-908X.2014.00304.x
    He, Y. S., Sun, A. Y., Zhang, Y. C., et al., 2022. High-Precision and High-Accuracy Magnesium Isotope Analysis on Multiple-Collector Inductively Coupled Plasma Mass Spectrometry Using a Critical Mixture Double Spike Technique. Solid Earth Sciences, 7(3): 188–199. https://doi.org/10.1016/j.sesci.2022.05.001
    Horner, T. J., Kinsley, C. W., Nielsen, S. G., 2015. Barium-Isotopic Fractionation in Seawater Mediated by Barite Cycling and Oceanic Circulation. Earth and Planetary Science Letters, 430: 511–522. https://doi.org/10.1016/j.epsl.2015.07.027
    Hu, X., Nan, X. Y., Yu, H. M., et al., 2021. High Precision Rb Isotope Measurements by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 36(12): 2744–2755. https://doi.org/10.1039/D1JA00315A
    Hu, Y., Teng, F. Z., 2019. Optimization of Analytical Conditions for Precise and Accurate Isotope Analyses of Li, Mg, Fe, Cu, and Zn by MC-ICPMS. Journal of Analytical Atomic Spectrometry, 34(2): 338–346. https://doi.org/10.1039/C8JA00335A
    Huang, F., Lundstrom, C. C., Glessner, J., et al., 2009. Chemical and Isotopic Fractionation of Wet Andesite in a Temperature Gradient: Experiments and Models Suggesting a New Mechanism of Magma Differentiation. Geochimica et Cosmochimica Acta, 73(3): 729–749. https://doi.org/10.1016/j.gca.2008.11.012
    Huang, J., Huang, F., Wang, Z. C., et al., 2017. Copper Isotope Fractionation during Partial Melting and Melt Percolation in the Upper Mantle: Evidence from Massif Peridotites in Ivrea-Verbano Zone, Italian Alps. Geochimica et Cosmochimica Acta, 211: 48–63. https://doi.org/10.1016/j.gca.2017.05.007
    Huang, K. J., Teng, F. Z., Wei, G. J., et al., 2012. Adsorption- and Desorption-Controlled Magnesium Isotope Fractionation during Extreme Weathering of Basalt in Hainan Island, China. Earth and Planetary Science Letters, 359: 73–83. https://doi.org/10.1016/j.epsl.2012.10.007
    Klaver, M., Lewis, J., Parkinson, I. J., et al., 2020. Sr Isotopes in Arcs Revisited: Tracking Slab Dehydration Using δ88/86Sr and 87Sr/86Sr Systematics of Arc Lavas. Geochimica et Cosmochimica Acta, 288: 101–119. https://doi.org/10.1016/j.gca.2020.08.010
    Li, D. D., Li, M. L., Liu, W. R., et al., 2018. Cadmium Isotope Ratios of Standard Solutions and Geological Reference Materials Measured by MC-ICP-MS. Geostandards and Geoanalytical Research, 42(4): 593–605. https://doi.org/10.1111/ggr.12236
    Li, D. D., Liu, S. G., 2022. Copper Isotope Fractionation during Basalt Leaching at 25 ºC and pH = 0.3, 2. Journal of Earth Science, 33(1): 82–91. https://doi.org/10.1007/s12583-021-1499-7
    Li, W. Y., Yu, H. M., Xu, J., et al., 2020. Barium Isotopic Composition of the Mantle: Constraints from Carbonatites. Geochimica et Cosmochimica Acta, 278: 235–243. https://doi.org/10.1016/j.gca.2019.06.041
    Liang, W. L., Huang, J., Zhang, G. B., et al., 2022. Iron Isotopic Fractionation during Eclogite Anatexis and Adakitic Melt Evolution: Insights into Garnet Effect on Fe Isotopic Variations in High-Silica Igneous Rocks. Contributions to Mineralogy and Petrology, 177(3): 33. https://doi.org/10.1007/s00410-022-01898-6
    Liu, J. G., Carlson, R. W., Rudnick, R. L., et al., 2012. Comparative Sr-Nd-Hf-Os-Pb Isotope Systematics of Xenolithic Peridotites from Yangyuan, North China Craton: Additional Evidence for a Paleoproterozoic Age. Chemical Geology, 332: 1–14. https://doi.org/10.1016/j.chemgeo.2012.09.013
    Liu, M. S., Zhang, Q., Zhang, Y. N., et al., 2020. High-Precision Cd Isotope Measurements of Soil and Rock Reference Materials by MC-ICP-MS with Double Spike Correction. Geostandards and Geoanalytical Research, 44(1): 169–182. https://doi.org/10.1111/ggr.12291
    Liu, S. A., Teng, F. Z., Li, S. G., et al., 2014. Copper and Iron Isotope Fractionation during Weathering and Pedogenesis: Insights from Saprolite Profiles. Geochimica et Cosmochimica Acta, 146: 59–75. https://doi.org/10.1016/j.gca.2014.09.040
    Liu, Y., Li, X. H., Zeng, Z., et al., 2019. Annually-Resolved Coral Skeletal δ138/134Ba Records: a New Proxy for Oceanic Ba Cycling. Geochimica et Cosmochimica Acta, 247: 27–39. https://doi.org/10.1016/j.gca.2018.12.022
    Lü, Y. W., Liu, S. G., 2022. Cu and Zn Isotopic Evidence for the Magnitude of Organic Burial in the Mesoproterozoic Ocean. Journal of Earth Science, 33(1): 92–99. https://doi.org/10.1007/s12583-021-1561-5
    Luo, Y., Dabek-Zlotorzynska, E., Celo, V., et al., 2010. Accurate and Precise Determination of Silver Isotope Fractionation in Environmental Samples by Multicollector-ICPMS. Analytical Chemistry, 82(9): 3922–3928. https://doi.org/10.1021/ac100532r
    Ma, J. L., Wei, G. J., Liu, Y., et al., 2013. Precise Measurement of Stable (δ88/86Sr) and Radiogenic (87Sr/86Sr) Strontium Isotope Ratios in Geological Standard Reference Materials Using MC-ICP-MS. Chinese Science Bulletin, 58(25): 3111–3118. https://doi.org/10.1007/s11434-013-5803-5
    Maréchal, C. N., Télouk, P., Albarède, F., 1999. Precise Analysis of Copper and Zinc Isotopic Compositions by Plasma-Source Mass Spectrometry. Chemical Geology, 156(1): 251–273. https://doi.org/10.1016/S0009-2541(98)00191-0
    Miyazaki, T., Kimura, J. I., Chang, Q., 2014. Analysis of Stable Isotope Ratios of Ba by Double-Spike Standard-Sample Bracketing Using Multiple-Collector Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 29(3): 483–490. https://doi.org/10.1039/C3JA50311A
    Moeller, K., Schoenberg, R., Pedersen, R. B., et al., 2012. Calibration of the New Certified Reference Materials ERM-AE633 and ERM-AE647 for Copper and IRMM-3702 for Zinc Isotope Amount Ratio Determinations. Geostandards and Geoanalytical Research, 36(2): 177–199. https://doi.org/10.1111/j.1751-908X.2011.00153.x
    Moynier, F., Agranier, A., Hezel, D. C., et al., 2010. Sr Stable Isotope Composition of Earth, the Moon, Mars, Vesta and Meteorites. Earth and Planetary Science Letters, 300(3/4): 359–366. https://doi.org/10.1016/j.epsl.2010.10.017
    Murphy, K., Rehkämper, M., Kreissig, K., et al., 2016. Improvements in Cd Stable Isotope Analysis Achieved through Use of Liquid-Liquid Extraction to Remove Organic Residues from Cd Separates Obtained by Extraction Chromatography. Journal of Analytical Atomic Spectrometry, 31(1): 319–327. https://doi.org/10.1039/c5ja00115c
    Nan, X. Y., Wu, F., Zhang, Z. F., et al., 2015. High-Precision Barium Isotope Measurements by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 30(11): 2307–2315. https://doi.org/10.1039/C5JA00166H
    Nan, X. Y., Yu, H. M., Rudnick, R. L., et al., 2018. Barium Isotopic Composition of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 233: 33–49. https://doi.org/10.1016/j.gca.2018.05.004
    Nielsen, S. G., Auro, M., Righter, K., et al., 2019. Nucleosynthetic Vanadium Isotope Heterogeneity of the Early Solar System Recorded in Chondritic Meteorites. Earth and Planetary Science Letters, 505: 131–140. https://doi.org/10.1016/j.epsl.2018.10.029
    Nielsen, S. G., Prytulak, J., Halliday, A. N., 2011. Determination of Precise and Accurate 51V/50V Isotope Ratios by MC-ICP-MS, Part 1: Chemical Separation of Vanadium and Mass Spectrometric Protocols. Geostandards and Geoanalytical Research, 35(3): 293–306. https://doi.org/10.1111/j.1751-908X.2011.00106.x
    Nier, A. O., 1938. The Isotopic Constitution of Strontium, Barium, Bismuth, Thallium and Mercury. Physical Review, 54(4): 275–278. https://doi.org/10.1103/physrev.54.275
    Opfergelt, S., Georg, R. B., Delvaux, B., et al., 2012. Mechanisms of Magnesium Isotope Fractionation in Volcanic Soil Weathering Sequences, Guadeloupe. Earth and Planetary Science Letters, 341: 176–185. https://doi.org/10.1016/j.epsl.2012.06.010
    Pallavicini, N., Engström, E., Baxter, D. C., et al., 2014. Cadmium Isotope Ratio Measurements in Environmental Matrices by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 29(9): 1570–1584. https://doi.org/10.1039/C4JA00125G
    Pearce, C. R., Parkinson, I. J., Gaillardet, J., et al., 2015. Reassessing the Stable (δ88/86Sr) and Radiogenic (87Sr/86Sr) Strontium Isotopic Composition of Marine Inputs. Geochimica et Cosmochimica Acta, 157: 125–146. https://doi.org/10.1016/j.gca.2015.02.029
    Pickard, H., Palk, E., Schönbächler, M., et al., 2022. The Cadmium and Zinc Isotope Compositions of the Silicate Earth-Implications for Terrestrial Volatile Accretion. Geochimica et Cosmochimica Acta, 338: 165–180. https://doi.org/10.1016/j.gca.2022.09.041
    Pogge von Strandmann, P. A. E., Elliott, T., Marschall, H. R., et al., 2011. Variations of Li and Mg Isotope Ratios in Bulk Chondrites and Mantle Xenoliths. Geochimica et Cosmochimica Acta, 75(18): 5247–5268. https://doi.org/10.1016/j.gca.2011.06.026
    Pringle, E. A., Moynier, F., 2017. Rubidium Isotopic Composition of the Earth, Meteorites, and the Moon: Evidence for the Origin of Volatile Loss during Planetary Accretion. Earth and Planetary Science Letters, 473: 62–70. https://doi.org/10.1016/j.epsl.2017.05.033
    Pringle, E. A., Moynier, F., Savage, P. S., et al., 2016. Silicon Isotopes Reveal Recycled Altered Oceanic Crust in the Mantle Sources of Ocean Island Basalts. Geochimica et Cosmochimica Acta, 189: 282–295. https://doi.org/10.1016/j.gca.2016.06.008
    Prytulak, J., Brett, A., Webb, M., et al., 2017. Thallium Elemental Behavior and Stable Isotope Fractionation during Magmatic Processes. Chemical Geology, 448: 71–83. https://doi.org/10.1016/j.chemgeo.2016.11.007
    Prytulak, J., Nielsen, S. G., Halliday, A. N., 2011. Determination of Precise and Accurate 51V/50V Isotope Ratios by Multi-Collector ICP-MS, Part 2: Isotopic Composition of Six Reference Materials Plus the Allende Chondrite and Verification Tests. Geostandards and Geoanalytical Research, 35(3): 307–318. https://doi.org/10.1111/j.1751-908X.2011.00105.x
    Prytulak, J., Nielsen, S. G., Ionov, D. A., et al., 2013. The Stable Vanadium Isotope Composition of the Mantle and Mafic Lavas. Earth and Planetary Science Letters, 365: 177–189. https://doi.org/10.1016/j.epsl.2013.01.010
    Qi, Y. H., Wu, F., Ionov, D. A., et al., 2019. Vanadium Isotope Composition of the Bulk Silicate Earth: Constraints from Peridotites and Komatiites. Geochimica et Cosmochimica Acta, 259: 288–301. https://doi.org/10.1016/j.gca.2019.06.008
    Qi, Y. H., Cheng, W. H., Nan, X. Y., et al., 2020. Iron Stable Isotopes in Bulk Soil and Sequential Extracted Fractions Trace Fe Redox Cycling in Paddy Soils. Journal of Agricultural and Food Chemistry, 68(31): 8143–8150. https://doi.org/10.1021/acs.jafc.0c02515
    Rudge, J. F., Reynolds, B. C., Bourdon, B., 2009. The Double Spike Toolbox. Chemical Geology, 265(3/4): 420–431. https://doi.org/10.1016/j.chemgeo.2009.05.010
    Savage, P. S., Georg, R. B., Williams, H. M., et al., 2011. Silicon Isotope Fractionation during Magmatic Differentiation. Geochimica et Cosmochimica Acta, 75(20): 6124–6139. https://doi.org/10.1016/j.gca.2011.07.043
    Savage, P. S., Moynier, F., Chen, H., et al., 2015. Copper Isotope Evidence for Large-Scale Sulphide Fractionation during Earth's Differentiation. Geochemical Perspectives Letters, 1: 53–64. https://doi.org/10.7185/geochemlet.1506
    Schönbächler, M., Carlson, R. W., Horan, M. F., et al., 2007. High Precision Ag Isotope Measurements in Geologic Materials by Multiple-Collector ICPMS: An Evaluation of Dry Versus Wet Plasma. International Journal of Mass Spectrometry, 261(2/3): 183–191. https://doi.org/10.1016/j.ijms.2006.09.016
    Schönbächler, M., Carlson, R. W., Horan, M. F., et al., 2010. Heterogeneous Accretion and the Moderately Volatile Element Budget of Earth. Science, 328(5980): 884–887. https://doi.org/10.1126/science.1186239
    Schuth, S., Horn, I., Brüske, A., et al., 2017. First Vanadium Isotope Analyses of V-Rich Minerals by Femtosecond Laser Ablation and Solution-Nebulization MC-ICP-MS. Ore Geology Reviews, 81: 1271–1286. https://doi.org/10.1016/j.oregeorev.2016.09.028
    Sheng, J. R., Li, S. Q., Owens, J. D., et al., 2024. δ238U of Coal Reference Materials Determined by MC-ICP-MS. Geostandards and Geoanalytical Research, 48(1): 289–299. https://doi.org/10.1111/ggr.12526
    Sonke, J. E., Sivry, Y., Viers, J., et al., 2008. Historical Variations in the Isotopic Composition of Atmospheric Zinc Deposition from a Zinc Smelter. Chemical Geology, 252(3/4): 145–157. https://doi.org/10.1016/j.chemgeo.2008.02.006
    Sossi, P. A., Prytulak, J., St C O'Neill, H., 2018. Experimental Calibration of Vanadium Partitioning and Stable Isotope Fractionation between Hydrous Granitic Melt and Magnetite at 800 ºC and 0.5 GPa. Contributions to Mineralogy and Petrology, 173(4): 27. https://doi.org/10.1007/s00410-018-1451-8
    Stow, M. A., Prytulak, J., Burton, K. W., et al., 2023. No V-Fe-Zn Isotopic Variation in Basalts from the 2021 Fagradalsfjall Eruption. Geochemical Perspectives Letters, 27: 54–58. https://doi.org/10.7185/geochemlet.2335
    Stow, M. A., Prytulak, J., Humphreys, M. C. S., et al., 2024. Vanadium Isotope Fractionation during Plutonic Differentiation and Implications for the Isotopic Composition of the Upper Continental Crust. Earth and Planetary Science Letters, 643: 118825. https://doi.org/10.1016/j.epsl.2024.118825
    Sun, N., Chen, X. Q., Tian, L. L., et al., 2022. Determining 88Sr/86Sr of Barite Using the Na2CO3 Exchange Method. Journal of Analytical Atomic Spectrometry, 37(2): 390–398. https://doi.org/10.1039/D1JA00400J
    Sun, P., Niu, Y., Duan, M., et al., 2023. Zinc Isotope Fractionation during Mid-Ocean Ridge Basalt Differentiation: Evidence from Lavas on the East Pacific Rise at 10º30'N. Geochimica et Cosmochimica Acta, 346: 180–191. https://doi.org/10.1016/j.gca.2023.02.012
    Tan, D. C., Zhu, J. M., Wang, X. L., et al., 2020. High-Sensitivity Determination of Cd Isotopes in Low-Cd Geological Samples by Double Spike MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 35(4): 713–727. https://doi.org/10.1039/C9JA00397E
    Teng, F. Z., Li, W. Y., Ke, S., et al., 2010. Magnesium isotopic composition of the Earth and chondrites. Geochimica et Cosmochimica Acta, 74: 4150-4166. https://doi.org/10.1016/j.gca.2010.04.019
    Tian, L. L., Gong, Y. Z., Wei, W., et al., 2020. Rapid Determination of Ba Isotope Compositions for Barites Using a H2O-Extraction Method and MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 35(8): 1566–1573. https://doi.org/10.1039/D0JA00078G
    Tian, L. L., Zeng, Z., Nan, X. Y., et al., 2019. Determining Ba Isotopes of Barite Using the Na2CO3 Exchange Reaction and Double-Spike Method by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 34(7): 1459–1467. https://doi.org/10.1039/C9JA00064J
    Tissot, F. L. H., Dauphas, N., 2015. Uranium Isotopic Compositions of the Crust and Ocean: Age Corrections, U Budget and Global Extent of Modern Anoxia. Geochimica et Cosmochimica Acta, 167: 113–143. https://doi.org/10.1016/j.gca.2015.06.034
    Toutain, J. P., Sonke, J., Munoz, M., et al., 2008. Evidence for Zn Isotopic Fractionation at Merapi Volcano. Chemical Geology, 253(1/2): 74–82. https://doi.org/10.1016/j.chemgeo.2008.04.007
    Wang, B. L., Moynier, F., Hu, Y., 2024. Rubidium Isotopic Compositions of Angrites Controlled by Extensive Evaporation and Partial Recondensation. Proceedings of the National Academy of Sciences of the United States of America, 121(1): e2311402121. https://doi.org/10.1073/pnas.2311402121
    Wang, K., Moynier, F., Dauphas, N., et al., 2012. Iron Isotope Fractionation in Planetary Crusts. Geochimica et Cosmochimica Acta, 89: 31–45. https://doi.org/10.1016/j.gca.2012.04.050
    Wang, S. J., Teng, F. Z., Williams, H. M., et al., 2012. Magnesium Isotopic Variations in Cratonic Eclogites: Origins and Implications. Earth and Planetary Science Letters, 359: 219–226. https://doi.org/10.1016/j.epsl.2012.10.016
    Wang, W. Y., Kang, J. T., Huang, F., 2023. How Precise and How Accurate can Magnesium Isotope Analysis Be by the Sample-Standard Bracketing Method? International Journal of Mass Spectrometry, 491: 117102. https://doi.org/10.1016/j.ijms.2023.117102
    Wang, Z. X., Liu, S. G., Yang, C., et al., 2023. Diffusion-Driven Zn and Mg Isotope Fractionation in Magmatic Fe-Ti-Cr Oxides and Implications for Timescales of Magmatic Processes. Geochimica et Cosmochimica Acta, 352: 107–121. https://doi.org/10.1016/j.gca.2023.05.009
    Wang, Z. Z., Liu, S. G., Liu, J. G., et al., 2017. Zinc Isotope Fractionation during Mantle Melting and Constraints on the Zn Isotope Composition of Earth's Upper Mantle. Geochimica et Cosmochimica Acta, 198: 151–167. https://doi.org/10.1016/j.gca.2016.11.014
    Weyer, S., Anbar, A. D., Brey, G. P., et al., 2005. Iron Isotope Fractionation during Planetary Differentiation. Earth and Planetary Science Letters, 240(2): 251–264. https://doi.org/10.1016/j.epsl.2005.09.023
    Weyer, S., Anbar, A. D., Gerdes, A., et al., 2008. Natural Fractionation of 238U/235U. Geochimica et Cosmochimica Acta, 72(2): 345–359. https://doi.org/10.1016/j.gca.2007.11.012
    Wombacher, F., Eisenhauer, A., Heuser, A., et al., 2009. Separation of Mg, Ca and Fe from Geological Reference Materials for Stable Isotope Ratio Analyses by MC-ICP-MS and Double-Spike TIMS. Journal of Analytical Atomic Spectrometry, 24(5): 627–636. https://doi.org/10.1039/B820154D
    Woodland, S. J., Rehkämper, M., Halliday, A. N., et al., 2005. Accurate Measurement of Silver Isotopic Compositions in Geological Materials Including Low Pd/Ag Meteorites. Geochimica et Cosmochimica Acta, 69(8): 2153–2163. https://doi.org/10.1016/j.gca.2004.10.012
    Wu, F., Qi, Y. H., Yu, H. M., et al., 2016. Vanadium Isotope Measurement by MC-ICP-MS. Chemical Geology, 421: 17–25. https://doi.org/10.1016/j.chemgeo.2015.11.027
    Xu, J., Yang, S. Y., Yang, Y. H., et al., 2020. Determination of Stable Strontium Isotopic Compositions by MC-ICP-MS. Atomic Spectroscopy, 41(2): 64–73. https://doi.org/10.46770/as.2020.02.003
    Xu, L. J., Liu, S. G., Wang, Z. Z., et al., 2019. Zinc Isotopic Compositions of Migmatites and Granitoids from the Dabie Orogen, Central China: Implications for Zinc Isotopic Fractionation during Differentiation of the Continental Crust. Lithos, 324: 454–465. https://doi.org/10.1016/j.lithos.2018.11.028
    Yang, K. H., Han, G. L., Zeng, J., et al., 2021. Tracing Fe Sources in Suspended Particulate Matter (SPM) in the Mun River: Application of Fe-Stable Isotopes Based on a Binary Mixing Model. ACS Earth and Space Chemistry, 5(6): 1613–1621. https://doi.org/10.1021/acsearthspacechem.1c00097
    Yang, W., Teng, F. Z., Zhang, H. F., 2009. Chondritic Magnesium Isotopic Composition of the Terrestrial Mantle: A Case Study of Peridotite Xenoliths from the North China Craton. Earth and Planetary Science Letters, 288(3/4): 475–482. https://doi.org/10.1016/j.epsl.2009.10.009
    Yu, H. M., Shi, Z., Chen, Y. X., et al., 2024. Fluid Metasomatism of Subducted Continental Crust: Insights from Si Isotope Compositions of Metasomatic Rocks from the Western and Eastern Alps. Lithos, 470: 107503. https://doi.org/10.1016/j.lithos.2024.107503
    Zambardi, T., Poitrasson, F., 2011. Precise Determination of Silicon Isotopes in Silicate Rock Reference Materials by MC-ICP-MS. Geostandards and Geoanalytical Research, 35(1): 89–99. https://doi.org/10.1111/j.1751-908X.2010.00067.x
    Zeng, Z., Li, X. H., Liu, Y., et al., 2019. High-Precision Barium Isotope Measurements of Carbonates by MC-ICP-MS. Geostandards and Geoanalytical Research, 43(2): 291–300. https://doi.org/10.1111/ggr.12256
    Zhang, G. L., Liu, Y. S., Moynier, F., et al., 2022. Copper Mobilization in the Lower Continental Crust beneath Cratonic Margins, a Cu Isotope Perspective. Geochimica et Cosmochimica Acta, 322: 43–57. https://doi.org/10.1016/j.gca.2022.01.031
    Zhang, Z. Y., Ma, J. L., Zhang, L., et al., 2018. Rubidium Purification via a Single Chemical Column and Its Isotope Measurement on Geological Standard Materials by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 33(2): 322–328. https://doi.org/10.1039/C7JA00406K
    Zhang, Z. Y., Ma, J. L., Zhang, L., et al., 2023. Rubidium Isotope Ratios of International Geological Reference Materials. Geostandards and Geoanalytical Research, 47(3): 697–712. https://doi.org/10.1111/ggr.12484
    Zhu, Y. T., Li, M., Wang, Z. C., et al., 2019. High-Precision Copper and Zinc Isotopic Measurements in Igneous Rock Standards Using Large-Geometry MC-ICP-MS. Atomic Spectroscopy, 40(6): 206–214. https://doi.org/10.46770/as.2019.06.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views(46) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return