Citation: | Jinting Kang, Xuqi Chen, Xi Deng, Yuan Fang, Haichuan Jiang, Chengyihong Liu, Cuihua Luo, Xing Li, Yuchao Lin, Zhaoqi Ren, Jiaru Sheng, Xue Tang, Liyi Xu, Jinyi Yan, Yaqi Zhang, Zhengyu Hou, Fei Wu, Huimin Yu, Fang Huang. Recommendations of Stable Mg, Si, V, Fe, Cu, Zn, Rb, Sr, Ag, Cd, Ba, and U Isotope Compositions for Multiple Geological References. Journal of Earth Science, 2025, 36(4): 1408-1424. doi: 10.1007/s12583-024-0145-6 |
The Metal Stable Isotope Geochemistry Laboratory (MSIGL) at the University of Science and Technology of China has developed state-of-the-art analytical methods for twelve stable isotope systems, including Mg, Si, V, Fe, Cu, Zn, Rb, Sr, Ag, Cd, Ba, and U. Geological and biological samples were first digested by acid dissolution or alkali dissolution. The target element was subsequently purified by the column chromatography method. A Neptune Plus MC-ICP-MS was used to measure isotope compositions and the isotope bias caused during measurements was calibrated by standard bracketing and/or the double spike method. The analytical procedure was carefully checked to ensure the high precision and accuracy of the data. Here, we summarized the protocol of these established methods and compiled the standard data measured at our lab as well as those reported in literature. This comprehensive dataset can serve as a reliable benchmark for calibration, method validation, and quality assurance in metal stable isotope analyses.
Abouchami, W., Galer, S. J. G., Horner, T. J., et al., 2013. A Common Reference Material for Cadmium Isotope Studies-NIST SRM 3108. Geostandards and Geoanalytical Research, 37(1): 5–17. https://doi.org/10.1111/j.1751-908X.2012.00175.x |
An, Y. J., Huang, J. -X., Griffin, W. L., et al., 2017. Isotopic Composition of Mg and Fe in Garnet Peridotites from the Kaapvaal and Siberian Cratons. Geochimica et Cosmochimica Acta, 200: 167–185. https://doi.org/10.1016/j.gca.2016.11.041 |
An, Y. J., Wu, F., Xiang, Y. X., et al., 2014. High-Precision Mg Isotope Analyses of Low-Mg Rocks by MC-ICP-MS. Chemical Geology, 390: 9–21. https://doi.org/10.1016/j.chemgeo.2014.09.014 |
Andrews, M. G., Jacobson, A. D., Lehn, G. O., et al., 2016. Radiogenic and Stable Sr Isotope Ratios (87Sr/86Sr, δ88/86Sr) as Tracers of Riverine Cation Sources and Biogeochemical Cycling in the Milford Sound Region of Fiordland, New Zealand. Geochimica et Cosmochimica Acta, 173: 284–303. https://doi.org/10.1016/j.gca.2015.10.005 |
Archer, C., Vance, D., 2004. Mass Discrimination Correction in Multiple-Collector Plasma Source Mass Spectrometry: An Example Using Cu and Zn Isotopes. Journal of Analytical Atomic Spectrometry, 19(5): 656–665. https://doi.org/10.1039/B315853E |
Baker, J., Bizzarro, M., Wittig, N., et al., 2005. Early Planetesimal Melting from an Age of 4.5662 Gyr for Differentiated Meteorites. Nature, 436(7054): 1127–1131. https://doi.org/10.1038/nature03882 |
Bao, Z. A., Huang, K. J., Huang, T. Z., et al., 2019a. Precise Magnesium Isotope Analyses of High-K and Low-Mg Rocks by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 34(5): 940–953. https://doi.org/10.1039/C9JA00002J |
Bao, Z. A., Zong, C. L., Huang, K. J., et al., 2019b. Determination of Mg Isotope Ratios without Column Chromatography for Carbonates Using Sulphuric Acid and MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 34(12): 2469–2475. https://doi.org/10.1039/C9JA00295B |
Bao, Z. A., Zong, C. L., Chen, K. Y., et al., 2020. Chromatographic Purification of Ca and Mg from Biological and Geological Samples for Isotope Analysis by MC-ICP-MS. International Journal of Mass Spectrometry, 448: 116268. https://doi.org/10.1016/j.ijms.2019.116268 |
Bizzarro, M., Paton, C., Larsen, K., et al., 2011. High-Precision Mg-Isotope Measurements of Terrestrial and Extraterrestrial Material by HR-MC-ICPMS—Implications for the Relative and Absolute Mg-Isotope Composition of the Bulk Silicate Earth. Journal of Analytical Atomic Spectrometry, 26(3): 565–577. https://doi.org/10.1039/C0JA00190B |
Borovička, J., Ackerman, L., Rejšek, J., 2021. Cadmium Isotopic Composition of Biogenic Certified Reference Materials Determined by Thermal Ionization Mass Spectrometry with Double Spike Correction. Talanta, 221: 121389. https://doi.org/10.1016/j.talanta.2020.121389 |
Bourdon, B., Tipper, E. T., Fitoussi, C., et al., 2010. Chondritic Mg Isotope Composition of the Earth. Geochimica et Cosmochimica Acta, 74(17): 5069–5083. https://doi.org/10.1016/j.gca.2010.06.008 |
Brazier, J. M., Schmitt, A. D., Gangloff, S., et al., 2020. Multi-Isotope Approach (δ44/40Ca, δ88/86Sr and 87Sr/86Sr) Provides Insights into Rhizolith Formation Mechanisms in Terrestrial Sediments of Nussloch (Germany). Chemical Geology, 545: 119641. https://doi.org/10.1016/j.chemgeo.2020.119641 |
Chao, H. C., You, C. F., Liu, H. C., et al., 2015. Evidence for Stable Sr Isotope Fractionation by Silicate Weathering in a Small Sedimentary Watershed in Southwestern Taiwan. Geochimica et Cosmochimica Acta, 165: 324–341. https://doi.org/10.1016/j.gca.2015.06.006 |
Charlier, B. L. A., Nowell, G. M., Parkinson, I. J., et al., 2012. High Temperature Strontium Stable Isotope Behaviour in the Early Solar System and Planetary Bodies. Earth and Planetary Science Letters, 329: 31–40. https://doi.org/10.1016/j.epsl.2012.02.008 |
Chen, D. D., Cheng, K., Liu, T. X., et al., 2023. Novel Insight into Microbially Mediated Nitrate-Reducing Fe(Ⅱ) Oxidation by Acidovorax Sp. Strain BoFeN1 Using Dual N-O Isotope Fractionation. Environmental Science & Technology, 57(33): 12546–12555. https://doi.org/10.1021/acs.est.3c02329 |
Chen, J. B., Louvat, P., Gaillardet, J., et al., 2009. Direct Separation of Zn from Dilute Aqueous Solutions for Isotope Composition Determination Using Multi-Collector ICP-MS. Chemical Geology, 259(3/4): 120–130. https://doi.org/10.1016/j.chemgeo.2008.10.040 |
Chen, S., Liu, Y. C., Hu, J. Y., et al., 2016. Zinc Isotopic Compositions of NIST SRM 683 and Whole-Rock Reference Materials. Geostandards and Geoanalytical Research, 40(3): 417–432. https://doi.org/10.1111/j.1751-908X.2015.00377.x |
Chen, X. Q., Zeng, Z., Yu, H. M., et al., 2022. Precise Measurements of δ88/86Sr for Twenty Geological Reference Materials by Double-Spike MC-ICP-MS. International Journal of Mass Spectrometry, 479: 116883. https://doi.org/10.1016/j.ijms.2022.116883 |
Chen, X. Y., Lapen, T. J., Chafetz, H. S., 2017. Accurate and Precise Silicon Isotope Analysis of Sulfur- and Iron-Rich Samples by MC-ICP-MS. Geostandards and Geoanalytical Research, 41(3): 427–435. https://doi.org/10.1111/ggr.12158 |
Choi, M. S., Ryu, J. S., Lee, S. W., et al., 2012. A Revisited Method for Mg Purification and Isotope Analysis Using Cool-Plasma MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 27(11): 1955–1959. https://doi.org/10.1039/C2JA30191A |
Craddock, P. R., Dauphas, N., 2011. Iron Isotopic Compositions of Geological Reference Materials and Chondrites. Geostandards and Geoanalytical Research, 35(1): 101–123. https://doi.org/10.1111/j.1751-908X.2010.00085.x |
Devos, G., Moynier, F., Creech, J., et al., 2024. Cadmium Isotope Composition of the Earth's Mantle Inferred from Analysis of Oceanic Basalts and Komatiites. Chemical Geology, 650: 121996. https://doi.org/10.1016/j.chemgeo.2024.121996 |
Du, D. H., Wang, X. L., Yang, T., et al., 2017. Origin of Heavy Fe Isotope Compositions in High-Silica Igneous Rocks: A Rhyolite Perspective. Geochimica et Cosmochimica Acta, 218: 58–72. https://doi.org/10.1016/j.gca.2017.09.014 |
Fang, Y., Wen, Q. Y., Xiao, Z. C., et al., 2024. High-Precision Measurement of Ag Isotopes for Silicate Rocks by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 39(7): 1750–1758. https://doi.org/10.1039/D3JA00424D |
Fitoussi, C., Bourdon, B., Kleine, T., et al., 2009. Si Isotope Systematics of Meteorites and Terrestrial Peridotites: Implications for Mg/Si Fractionation in the Solar Nebula and for Si in the Earth's Core. Earth and Planetary Science Letters, 287(1/2): 77–85. https://doi.org/10.1016/j.epsl.2009.07.038 |
Georg, R. B., Reynolds, B. C., Frank, M., et al., 2006. Mechanisms Controlling the Silicon Isotopic Compositions of River Waters. Earth and Planetary Science Letters, 249(3/4): 290–306. https://doi.org/10.1016/j.epsl.2006.07.006 |
Gong, H. M., Guo, P. Y., Chen, S., et al., 2020. A Re-Assessment of Nickel-Doping Method in Iron Isotope Analysis on Rock Samples Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Acta Geochimica, 39(3): 355–364. https://doi.org/10.1007/s11631-019-00392-4 |
Gong, Y. Z., Zeng, Z., Cheng, W. H., et al., 2020. Barium Isotopic Fractionation during Strong Weathering of Basalt in a Tropical Climate. Environment International, 143: 105896. https://doi.org/10.1016/j.envint.2020.105896 |
Guan, Q. Y., Sun, Y. L., Zhang, Z. F., et al., 2020. Determination of δ44/40Ca and δ56/54Fe in Geological Materials Combined with a Simplified Method for Their Separation Using a Single TODGA Resin Column. Geostandards and Geoanalytical Research, 44(4): 669–683. https://doi.org/10.1111/ggr.12350 |
Guo, H. H., Xia, Y., Bai, R. X., et al., 2020. Experiments on Cu-Isotope Fractionation between Chlorine-Bearing Fluid and Silicate Magma: Implications for Fluid Exsolution and Porphyry Cu Deposits. National Science Review, 7(8): 1319–1330. https://doi.org/10.1093/nsr/nwz221 |
Guo, R., Yu, H. M., Fang, S. B., et al., 2023. Iron, Copper and Zinc Isotope Compositions of Biological Reference Materials Determined by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 38(11): 2365–2377. https://doi.org/10.1039/D3JA00281K |
He, Y. S., Ke, S., Teng, F. Z., et al., 2015. High-Precision Iron Isotope Analysis of Geological Reference Materials by High-Resolution MC-ICP-MS. Geostandards and Geoanalytical Research, 39(3): 341–356. https://doi.org/10.1111/j.1751-908X.2014.00304.x |
He, Y. S., Sun, A. Y., Zhang, Y. C., et al., 2022. High-Precision and High-Accuracy Magnesium Isotope Analysis on Multiple-Collector Inductively Coupled Plasma Mass Spectrometry Using a Critical Mixture Double Spike Technique. Solid Earth Sciences, 7(3): 188–199. https://doi.org/10.1016/j.sesci.2022.05.001 |
Horner, T. J., Kinsley, C. W., Nielsen, S. G., 2015. Barium-Isotopic Fractionation in Seawater Mediated by Barite Cycling and Oceanic Circulation. Earth and Planetary Science Letters, 430: 511–522. https://doi.org/10.1016/j.epsl.2015.07.027 |
Hu, X., Nan, X. Y., Yu, H. M., et al., 2021. High Precision Rb Isotope Measurements by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 36(12): 2744–2755. https://doi.org/10.1039/D1JA00315A |
Hu, Y., Teng, F. Z., 2019. Optimization of Analytical Conditions for Precise and Accurate Isotope Analyses of Li, Mg, Fe, Cu, and Zn by MC-ICPMS. Journal of Analytical Atomic Spectrometry, 34(2): 338–346. https://doi.org/10.1039/C8JA00335A |
Huang, F., Lundstrom, C. C., Glessner, J., et al., 2009. Chemical and Isotopic Fractionation of Wet Andesite in a Temperature Gradient: Experiments and Models Suggesting a New Mechanism of Magma Differentiation. Geochimica et Cosmochimica Acta, 73(3): 729–749. https://doi.org/10.1016/j.gca.2008.11.012 |
Huang, J., Huang, F., Wang, Z. C., et al., 2017. Copper Isotope Fractionation during Partial Melting and Melt Percolation in the Upper Mantle: Evidence from Massif Peridotites in Ivrea-Verbano Zone, Italian Alps. Geochimica et Cosmochimica Acta, 211: 48–63. https://doi.org/10.1016/j.gca.2017.05.007 |
Huang, K. J., Teng, F. Z., Wei, G. J., et al., 2012. Adsorption- and Desorption-Controlled Magnesium Isotope Fractionation during Extreme Weathering of Basalt in Hainan Island, China. Earth and Planetary Science Letters, 359: 73–83. https://doi.org/10.1016/j.epsl.2012.10.007 |
Klaver, M., Lewis, J., Parkinson, I. J., et al., 2020. Sr Isotopes in Arcs Revisited: Tracking Slab Dehydration Using δ88/86Sr and 87Sr/86Sr Systematics of Arc Lavas. Geochimica et Cosmochimica Acta, 288: 101–119. https://doi.org/10.1016/j.gca.2020.08.010 |
Li, D. D., Li, M. L., Liu, W. R., et al., 2018. Cadmium Isotope Ratios of Standard Solutions and Geological Reference Materials Measured by MC-ICP-MS. Geostandards and Geoanalytical Research, 42(4): 593–605. https://doi.org/10.1111/ggr.12236 |
Li, D. D., Liu, S. G., 2022. Copper Isotope Fractionation during Basalt Leaching at 25 ºC and pH = 0.3, 2. Journal of Earth Science, 33(1): 82–91. https://doi.org/10.1007/s12583-021-1499-7 |
Li, W. Y., Yu, H. M., Xu, J., et al., 2020. Barium Isotopic Composition of the Mantle: Constraints from Carbonatites. Geochimica et Cosmochimica Acta, 278: 235–243. https://doi.org/10.1016/j.gca.2019.06.041 |
Liang, W. L., Huang, J., Zhang, G. B., et al., 2022. Iron Isotopic Fractionation during Eclogite Anatexis and Adakitic Melt Evolution: Insights into Garnet Effect on Fe Isotopic Variations in High-Silica Igneous Rocks. Contributions to Mineralogy and Petrology, 177(3): 33. https://doi.org/10.1007/s00410-022-01898-6 |
Liu, J. G., Carlson, R. W., Rudnick, R. L., et al., 2012. Comparative Sr-Nd-Hf-Os-Pb Isotope Systematics of Xenolithic Peridotites from Yangyuan, North China Craton: Additional Evidence for a Paleoproterozoic Age. Chemical Geology, 332: 1–14. https://doi.org/10.1016/j.chemgeo.2012.09.013 |
Liu, M. S., Zhang, Q., Zhang, Y. N., et al., 2020. High-Precision Cd Isotope Measurements of Soil and Rock Reference Materials by MC-ICP-MS with Double Spike Correction. Geostandards and Geoanalytical Research, 44(1): 169–182. https://doi.org/10.1111/ggr.12291 |
Liu, S. A., Teng, F. Z., Li, S. G., et al., 2014. Copper and Iron Isotope Fractionation during Weathering and Pedogenesis: Insights from Saprolite Profiles. Geochimica et Cosmochimica Acta, 146: 59–75. https://doi.org/10.1016/j.gca.2014.09.040 |
Liu, Y., Li, X. H., Zeng, Z., et al., 2019. Annually-Resolved Coral Skeletal δ138/134Ba Records: a New Proxy for Oceanic Ba Cycling. Geochimica et Cosmochimica Acta, 247: 27–39. https://doi.org/10.1016/j.gca.2018.12.022 |
Lü, Y. W., Liu, S. G., 2022. Cu and Zn Isotopic Evidence for the Magnitude of Organic Burial in the Mesoproterozoic Ocean. Journal of Earth Science, 33(1): 92–99. https://doi.org/10.1007/s12583-021-1561-5 |
Luo, Y., Dabek-Zlotorzynska, E., Celo, V., et al., 2010. Accurate and Precise Determination of Silver Isotope Fractionation in Environmental Samples by Multicollector-ICPMS. Analytical Chemistry, 82(9): 3922–3928. https://doi.org/10.1021/ac100532r |
Ma, J. L., Wei, G. J., Liu, Y., et al., 2013. Precise Measurement of Stable (δ88/86Sr) and Radiogenic (87Sr/86Sr) Strontium Isotope Ratios in Geological Standard Reference Materials Using MC-ICP-MS. Chinese Science Bulletin, 58(25): 3111–3118. https://doi.org/10.1007/s11434-013-5803-5 |
Maréchal, C. N., Télouk, P., Albarède, F., 1999. Precise Analysis of Copper and Zinc Isotopic Compositions by Plasma-Source Mass Spectrometry. Chemical Geology, 156(1): 251–273. https://doi.org/10.1016/S0009-2541(98)00191-0 |
Miyazaki, T., Kimura, J. I., Chang, Q., 2014. Analysis of Stable Isotope Ratios of Ba by Double-Spike Standard-Sample Bracketing Using Multiple-Collector Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 29(3): 483–490. https://doi.org/10.1039/C3JA50311A |
Moeller, K., Schoenberg, R., Pedersen, R. B., et al., 2012. Calibration of the New Certified Reference Materials ERM-AE633 and ERM-AE647 for Copper and IRMM-3702 for Zinc Isotope Amount Ratio Determinations. Geostandards and Geoanalytical Research, 36(2): 177–199. https://doi.org/10.1111/j.1751-908X.2011.00153.x |
Moynier, F., Agranier, A., Hezel, D. C., et al., 2010. Sr Stable Isotope Composition of Earth, the Moon, Mars, Vesta and Meteorites. Earth and Planetary Science Letters, 300(3/4): 359–366. https://doi.org/10.1016/j.epsl.2010.10.017 |
Murphy, K., Rehkämper, M., Kreissig, K., et al., 2016. Improvements in Cd Stable Isotope Analysis Achieved through Use of Liquid-Liquid Extraction to Remove Organic Residues from Cd Separates Obtained by Extraction Chromatography. Journal of Analytical Atomic Spectrometry, 31(1): 319–327. https://doi.org/10.1039/c5ja00115c |
Nan, X. Y., Wu, F., Zhang, Z. F., et al., 2015. High-Precision Barium Isotope Measurements by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 30(11): 2307–2315. https://doi.org/10.1039/C5JA00166H |
Nan, X. Y., Yu, H. M., Rudnick, R. L., et al., 2018. Barium Isotopic Composition of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 233: 33–49. https://doi.org/10.1016/j.gca.2018.05.004 |
Nielsen, S. G., Auro, M., Righter, K., et al., 2019. Nucleosynthetic Vanadium Isotope Heterogeneity of the Early Solar System Recorded in Chondritic Meteorites. Earth and Planetary Science Letters, 505: 131–140. https://doi.org/10.1016/j.epsl.2018.10.029 |
Nielsen, S. G., Prytulak, J., Halliday, A. N., 2011. Determination of Precise and Accurate 51V/50V Isotope Ratios by MC-ICP-MS, Part 1: Chemical Separation of Vanadium and Mass Spectrometric Protocols. Geostandards and Geoanalytical Research, 35(3): 293–306. https://doi.org/10.1111/j.1751-908X.2011.00106.x |
Nier, A. O., 1938. The Isotopic Constitution of Strontium, Barium, Bismuth, Thallium and Mercury. Physical Review, 54(4): 275–278. https://doi.org/10.1103/physrev.54.275 |
Opfergelt, S., Georg, R. B., Delvaux, B., et al., 2012. Mechanisms of Magnesium Isotope Fractionation in Volcanic Soil Weathering Sequences, Guadeloupe. Earth and Planetary Science Letters, 341: 176–185. https://doi.org/10.1016/j.epsl.2012.06.010 |
Pallavicini, N., Engström, E., Baxter, D. C., et al., 2014. Cadmium Isotope Ratio Measurements in Environmental Matrices by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 29(9): 1570–1584. https://doi.org/10.1039/C4JA00125G |
Pearce, C. R., Parkinson, I. J., Gaillardet, J., et al., 2015. Reassessing the Stable (δ88/86Sr) and Radiogenic (87Sr/86Sr) Strontium Isotopic Composition of Marine Inputs. Geochimica et Cosmochimica Acta, 157: 125–146. https://doi.org/10.1016/j.gca.2015.02.029 |
Pickard, H., Palk, E., Schönbächler, M., et al., 2022. The Cadmium and Zinc Isotope Compositions of the Silicate Earth-Implications for Terrestrial Volatile Accretion. Geochimica et Cosmochimica Acta, 338: 165–180. https://doi.org/10.1016/j.gca.2022.09.041 |
Pogge von Strandmann, P. A. E., Elliott, T., Marschall, H. R., et al., 2011. Variations of Li and Mg Isotope Ratios in Bulk Chondrites and Mantle Xenoliths. Geochimica et Cosmochimica Acta, 75(18): 5247–5268. https://doi.org/10.1016/j.gca.2011.06.026 |
Pringle, E. A., Moynier, F., 2017. Rubidium Isotopic Composition of the Earth, Meteorites, and the Moon: Evidence for the Origin of Volatile Loss during Planetary Accretion. Earth and Planetary Science Letters, 473: 62–70. https://doi.org/10.1016/j.epsl.2017.05.033 |
Pringle, E. A., Moynier, F., Savage, P. S., et al., 2016. Silicon Isotopes Reveal Recycled Altered Oceanic Crust in the Mantle Sources of Ocean Island Basalts. Geochimica et Cosmochimica Acta, 189: 282–295. https://doi.org/10.1016/j.gca.2016.06.008 |
Prytulak, J., Brett, A., Webb, M., et al., 2017. Thallium Elemental Behavior and Stable Isotope Fractionation during Magmatic Processes. Chemical Geology, 448: 71–83. https://doi.org/10.1016/j.chemgeo.2016.11.007 |
Prytulak, J., Nielsen, S. G., Halliday, A. N., 2011. Determination of Precise and Accurate 51V/50V Isotope Ratios by Multi-Collector ICP-MS, Part 2: Isotopic Composition of Six Reference Materials Plus the Allende Chondrite and Verification Tests. Geostandards and Geoanalytical Research, 35(3): 307–318. https://doi.org/10.1111/j.1751-908X.2011.00105.x |
Prytulak, J., Nielsen, S. G., Ionov, D. A., et al., 2013. The Stable Vanadium Isotope Composition of the Mantle and Mafic Lavas. Earth and Planetary Science Letters, 365: 177–189. https://doi.org/10.1016/j.epsl.2013.01.010 |
Qi, Y. H., Wu, F., Ionov, D. A., et al., 2019. Vanadium Isotope Composition of the Bulk Silicate Earth: Constraints from Peridotites and Komatiites. Geochimica et Cosmochimica Acta, 259: 288–301. https://doi.org/10.1016/j.gca.2019.06.008 |
Qi, Y. H., Cheng, W. H., Nan, X. Y., et al., 2020. Iron Stable Isotopes in Bulk Soil and Sequential Extracted Fractions Trace Fe Redox Cycling in Paddy Soils. Journal of Agricultural and Food Chemistry, 68(31): 8143–8150. https://doi.org/10.1021/acs.jafc.0c02515 |
Rudge, J. F., Reynolds, B. C., Bourdon, B., 2009. The Double Spike Toolbox. Chemical Geology, 265(3/4): 420–431. https://doi.org/10.1016/j.chemgeo.2009.05.010 |
Savage, P. S., Georg, R. B., Williams, H. M., et al., 2011. Silicon Isotope Fractionation during Magmatic Differentiation. Geochimica et Cosmochimica Acta, 75(20): 6124–6139. https://doi.org/10.1016/j.gca.2011.07.043 |
Savage, P. S., Moynier, F., Chen, H., et al., 2015. Copper Isotope Evidence for Large-Scale Sulphide Fractionation during Earth's Differentiation. Geochemical Perspectives Letters, 1: 53–64. https://doi.org/10.7185/geochemlet.1506 |
Schönbächler, M., Carlson, R. W., Horan, M. F., et al., 2007. High Precision Ag Isotope Measurements in Geologic Materials by Multiple-Collector ICPMS: An Evaluation of Dry Versus Wet Plasma. International Journal of Mass Spectrometry, 261(2/3): 183–191. https://doi.org/10.1016/j.ijms.2006.09.016 |
Schönbächler, M., Carlson, R. W., Horan, M. F., et al., 2010. Heterogeneous Accretion and the Moderately Volatile Element Budget of Earth. Science, 328(5980): 884–887. https://doi.org/10.1126/science.1186239 |
Schuth, S., Horn, I., Brüske, A., et al., 2017. First Vanadium Isotope Analyses of V-Rich Minerals by Femtosecond Laser Ablation and Solution-Nebulization MC-ICP-MS. Ore Geology Reviews, 81: 1271–1286. https://doi.org/10.1016/j.oregeorev.2016.09.028 |
Sheng, J. R., Li, S. Q., Owens, J. D., et al., 2024. δ238U of Coal Reference Materials Determined by MC-ICP-MS. Geostandards and Geoanalytical Research, 48(1): 289–299. https://doi.org/10.1111/ggr.12526 |
Sonke, J. E., Sivry, Y., Viers, J., et al., 2008. Historical Variations in the Isotopic Composition of Atmospheric Zinc Deposition from a Zinc Smelter. Chemical Geology, 252(3/4): 145–157. https://doi.org/10.1016/j.chemgeo.2008.02.006 |
Sossi, P. A., Prytulak, J., St C O'Neill, H., 2018. Experimental Calibration of Vanadium Partitioning and Stable Isotope Fractionation between Hydrous Granitic Melt and Magnetite at 800 ºC and 0.5 GPa. Contributions to Mineralogy and Petrology, 173(4): 27. https://doi.org/10.1007/s00410-018-1451-8 |
Stow, M. A., Prytulak, J., Burton, K. W., et al., 2023. No V-Fe-Zn Isotopic Variation in Basalts from the 2021 Fagradalsfjall Eruption. Geochemical Perspectives Letters, 27: 54–58. https://doi.org/10.7185/geochemlet.2335 |
Stow, M. A., Prytulak, J., Humphreys, M. C. S., et al., 2024. Vanadium Isotope Fractionation during Plutonic Differentiation and Implications for the Isotopic Composition of the Upper Continental Crust. Earth and Planetary Science Letters, 643: 118825. https://doi.org/10.1016/j.epsl.2024.118825 |
Sun, N., Chen, X. Q., Tian, L. L., et al., 2022. Determining 88Sr/86Sr of Barite Using the Na2CO3 Exchange Method. Journal of Analytical Atomic Spectrometry, 37(2): 390–398. https://doi.org/10.1039/D1JA00400J |
Sun, P., Niu, Y., Duan, M., et al., 2023. Zinc Isotope Fractionation during Mid-Ocean Ridge Basalt Differentiation: Evidence from Lavas on the East Pacific Rise at 10º30'N. Geochimica et Cosmochimica Acta, 346: 180–191. https://doi.org/10.1016/j.gca.2023.02.012 |
Tan, D. C., Zhu, J. M., Wang, X. L., et al., 2020. High-Sensitivity Determination of Cd Isotopes in Low-Cd Geological Samples by Double Spike MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 35(4): 713–727. https://doi.org/10.1039/C9JA00397E |
Teng, F. Z., Li, W. Y., Ke, S., et al., 2010. Magnesium isotopic composition of the Earth and chondrites. Geochimica et Cosmochimica Acta, 74: 4150-4166. https://doi.org/10.1016/j.gca.2010.04.019 |
Tian, L. L., Gong, Y. Z., Wei, W., et al., 2020. Rapid Determination of Ba Isotope Compositions for Barites Using a H2O-Extraction Method and MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 35(8): 1566–1573. https://doi.org/10.1039/D0JA00078G |
Tian, L. L., Zeng, Z., Nan, X. Y., et al., 2019. Determining Ba Isotopes of Barite Using the Na2CO3 Exchange Reaction and Double-Spike Method by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 34(7): 1459–1467. https://doi.org/10.1039/C9JA00064J |
Tissot, F. L. H., Dauphas, N., 2015. Uranium Isotopic Compositions of the Crust and Ocean: Age Corrections, U Budget and Global Extent of Modern Anoxia. Geochimica et Cosmochimica Acta, 167: 113–143. https://doi.org/10.1016/j.gca.2015.06.034 |
Toutain, J. P., Sonke, J., Munoz, M., et al., 2008. Evidence for Zn Isotopic Fractionation at Merapi Volcano. Chemical Geology, 253(1/2): 74–82. https://doi.org/10.1016/j.chemgeo.2008.04.007 |
Wang, B. L., Moynier, F., Hu, Y., 2024. Rubidium Isotopic Compositions of Angrites Controlled by Extensive Evaporation and Partial Recondensation. Proceedings of the National Academy of Sciences of the United States of America, 121(1): e2311402121. https://doi.org/10.1073/pnas.2311402121 |
Wang, K., Moynier, F., Dauphas, N., et al., 2012. Iron Isotope Fractionation in Planetary Crusts. Geochimica et Cosmochimica Acta, 89: 31–45. https://doi.org/10.1016/j.gca.2012.04.050 |
Wang, S. J., Teng, F. Z., Williams, H. M., et al., 2012. Magnesium Isotopic Variations in Cratonic Eclogites: Origins and Implications. Earth and Planetary Science Letters, 359: 219–226. https://doi.org/10.1016/j.epsl.2012.10.016 |
Wang, W. Y., Kang, J. T., Huang, F., 2023. How Precise and How Accurate can Magnesium Isotope Analysis Be by the Sample-Standard Bracketing Method? International Journal of Mass Spectrometry, 491: 117102. https://doi.org/10.1016/j.ijms.2023.117102 |
Wang, Z. X., Liu, S. G., Yang, C., et al., 2023. Diffusion-Driven Zn and Mg Isotope Fractionation in Magmatic Fe-Ti-Cr Oxides and Implications for Timescales of Magmatic Processes. Geochimica et Cosmochimica Acta, 352: 107–121. https://doi.org/10.1016/j.gca.2023.05.009 |
Wang, Z. Z., Liu, S. G., Liu, J. G., et al., 2017. Zinc Isotope Fractionation during Mantle Melting and Constraints on the Zn Isotope Composition of Earth's Upper Mantle. Geochimica et Cosmochimica Acta, 198: 151–167. https://doi.org/10.1016/j.gca.2016.11.014 |
Weyer, S., Anbar, A. D., Brey, G. P., et al., 2005. Iron Isotope Fractionation during Planetary Differentiation. Earth and Planetary Science Letters, 240(2): 251–264. https://doi.org/10.1016/j.epsl.2005.09.023 |
Weyer, S., Anbar, A. D., Gerdes, A., et al., 2008. Natural Fractionation of 238U/235U. Geochimica et Cosmochimica Acta, 72(2): 345–359. https://doi.org/10.1016/j.gca.2007.11.012 |
Wombacher, F., Eisenhauer, A., Heuser, A., et al., 2009. Separation of Mg, Ca and Fe from Geological Reference Materials for Stable Isotope Ratio Analyses by MC-ICP-MS and Double-Spike TIMS. Journal of Analytical Atomic Spectrometry, 24(5): 627–636. https://doi.org/10.1039/B820154D |
Woodland, S. J., Rehkämper, M., Halliday, A. N., et al., 2005. Accurate Measurement of Silver Isotopic Compositions in Geological Materials Including Low Pd/Ag Meteorites. Geochimica et Cosmochimica Acta, 69(8): 2153–2163. https://doi.org/10.1016/j.gca.2004.10.012 |
Wu, F., Qi, Y. H., Yu, H. M., et al., 2016. Vanadium Isotope Measurement by MC-ICP-MS. Chemical Geology, 421: 17–25. https://doi.org/10.1016/j.chemgeo.2015.11.027 |
Xu, J., Yang, S. Y., Yang, Y. H., et al., 2020. Determination of Stable Strontium Isotopic Compositions by MC-ICP-MS. Atomic Spectroscopy, 41(2): 64–73. https://doi.org/10.46770/as.2020.02.003 |
Xu, L. J., Liu, S. G., Wang, Z. Z., et al., 2019. Zinc Isotopic Compositions of Migmatites and Granitoids from the Dabie Orogen, Central China: Implications for Zinc Isotopic Fractionation during Differentiation of the Continental Crust. Lithos, 324: 454–465. https://doi.org/10.1016/j.lithos.2018.11.028 |
Yang, K. H., Han, G. L., Zeng, J., et al., 2021. Tracing Fe Sources in Suspended Particulate Matter (SPM) in the Mun River: Application of Fe-Stable Isotopes Based on a Binary Mixing Model. ACS Earth and Space Chemistry, 5(6): 1613–1621. https://doi.org/10.1021/acsearthspacechem.1c00097 |
Yang, W., Teng, F. Z., Zhang, H. F., 2009. Chondritic Magnesium Isotopic Composition of the Terrestrial Mantle: A Case Study of Peridotite Xenoliths from the North China Craton. Earth and Planetary Science Letters, 288(3/4): 475–482. https://doi.org/10.1016/j.epsl.2009.10.009 |
Yu, H. M., Shi, Z., Chen, Y. X., et al., 2024. Fluid Metasomatism of Subducted Continental Crust: Insights from Si Isotope Compositions of Metasomatic Rocks from the Western and Eastern Alps. Lithos, 470: 107503. https://doi.org/10.1016/j.lithos.2024.107503 |
Zambardi, T., Poitrasson, F., 2011. Precise Determination of Silicon Isotopes in Silicate Rock Reference Materials by MC-ICP-MS. Geostandards and Geoanalytical Research, 35(1): 89–99. https://doi.org/10.1111/j.1751-908X.2010.00067.x |
Zeng, Z., Li, X. H., Liu, Y., et al., 2019. High-Precision Barium Isotope Measurements of Carbonates by MC-ICP-MS. Geostandards and Geoanalytical Research, 43(2): 291–300. https://doi.org/10.1111/ggr.12256 |
Zhang, G. L., Liu, Y. S., Moynier, F., et al., 2022. Copper Mobilization in the Lower Continental Crust beneath Cratonic Margins, a Cu Isotope Perspective. Geochimica et Cosmochimica Acta, 322: 43–57. https://doi.org/10.1016/j.gca.2022.01.031 |
Zhang, Z. Y., Ma, J. L., Zhang, L., et al., 2018. Rubidium Purification via a Single Chemical Column and Its Isotope Measurement on Geological Standard Materials by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 33(2): 322–328. https://doi.org/10.1039/C7JA00406K |
Zhang, Z. Y., Ma, J. L., Zhang, L., et al., 2023. Rubidium Isotope Ratios of International Geological Reference Materials. Geostandards and Geoanalytical Research, 47(3): 697–712. https://doi.org/10.1111/ggr.12484 |
Zhu, Y. T., Li, M., Wang, Z. C., et al., 2019. High-Precision Copper and Zinc Isotopic Measurements in Igneous Rock Standards Using Large-Geometry MC-ICP-MS. Atomic Spectroscopy, 40(6): 206–214. https://doi.org/10.46770/as.2019.06.002 |