Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 20 Issue 1
Feb 2009
Turn off MathJax
Article Contents
Shi Chen, Jian Zhang, Yujun Sun, Yaolin Shi. Lithospheric Thermal Isostasy of North Continental Margin of the South China Sea. Journal of Earth Science, 2009, 20(1): 95-106. doi: 10.1007/s12583-009-0010-7
Citation: Shi Chen, Jian Zhang, Yujun Sun, Yaolin Shi. Lithospheric Thermal Isostasy of North Continental Margin of the South China Sea. Journal of Earth Science, 2009, 20(1): 95-106. doi: 10.1007/s12583-009-0010-7

Lithospheric Thermal Isostasy of North Continental Margin of the South China Sea

doi: 10.1007/s12583-009-0010-7
Funds:

the CAS Knowledge Innovation Program KZCX2-YW-203-01

the National Basic Research Program of China G2007CB41170404

More Information
  • Corresponding author: Chen Shi, chenshi80@gmail.com
  • Received Date: 28 Oct 2008
  • Accepted Date: 01 Dec 2008
  • Accompanied with rifting and detaching of the north continental margin of the South China Sea, the crust and the lithosphere become thinner away from the continental margin resulting from the tectonic activities, such as tensile deformation, thermal uplift, and cooling subsidence, etc.. Integrated with thermal, gravimetric, and isostatic analysis techniques, based on the seismic interpretation of the deep penetration seismic soundings across the northern margin of the South China Sea, we reconstructed the lithospheric thermal structure and derived the variation of the crust boundary in the east and west parts of the seismic profile by using gravity anomaly data. We mainly studied the thermal isostasy problems using the bathymetry of the profiles and calculated the crust thinning effect due to the thermal variety in the rifting process. The results indicate that the thermal isostasy may reach 2.5 km, and the compositional variations in the lithospheric density and thickness may produce a variation of 4.0 km. Therefore, the compositional isostatic correction is very important to recover the relationship between surface heat flow and topography. Moreover, because of the high heat flow characteristic of the continental margin, building the model of lithospheric geotherm in this region is of great importan for studying the Cenozoic tectonic thermal evolution of the north passive continental margin of the South China Sea.

     

  • loading
  • Christensen, N., Mooney, W., 1995. Seismic Velocity Structure and Composition of the Continental Crust: A Global View. Journal of Geophysical Research, 100(B6): 9761–9788 doi: 10.1029/95JB00259
    Hasterokl, D., Chapman, D. S., 2007a. Continental Thermal Isostasy: 1. Methods and Sensitivity. Journal of Geophysical Research, 112: B06414 doi: 10.1029/2006JB004663
    Hasterokl, D., Chapman, D. S., 2007b. Continental Thermal Isostasy: 2. Application to North America. Journal of Geophysical Research, 112: B06415 http://doc230.meixbooks.com/the-figure-of-the-earth-and-isostasy-from-measurements-in-the-united-sta-hayford-john-f-P-44i8h.pdf
    He, L. J., 2002. Effects of Lithospheric Rheology on Thermal-Mechanical Modeling of Extensional Basins. Chinese Journal of Geophysics, 45(1): 49–55 (in Chinese with English Abstract)
    Hofmeister, A., 1999. Mantle Values of Thermal Conductivity and the Geotherm from Phonon Lifetimes. Science, 283: 1699–1706 doi: 10.1126/science.283.5408.1699
    Huang, C. J., Zhou, D., Chen, C. M., et al., 2005. The Deep Crustal Structure of Baiyun Sag Based on the Deep Reflection Seismic Profile. Chinese Science Bulletin, 50(10): 1024–1031 (in Chinese) doi: 10.1360/csb2005-50-10-1024
    McKenzie, D., Jackson, J., Priestley, K., 2005. Thermal Structure of Oceanic and Continental Lithosphere. Earth and Planetary Science Letters, 233(3–4): 337–349 http://www.onacademic.com/detail/journal_1000035382017410_57c5.html
    Nissen, S. S., Hayes, D. E., Buhl, P., et al., 1995a. Deep Penetration Seismic Soundings across the Northern Margin of the South China Sea. Journal of Geophysical Research, 100(B11): 22407–22433 doi: 10.1029/95JB01866
    Nissen, S. S., Hayes, D. E., Yao, B. C., et al., 1995b. Gravity, Heat Flow, and Seismic Constraints on the Processes of Crustal Extension: Northern Margin of the South China Sea. Journal of Geophysical Research, 100(B11): 22447–22483 doi: 10.1029/95JB01868
    Ruppel, C., 1995. Extensional Processes in Continental Lithosphere. Journal of Geophysical Research, 100(B12): 24187–24215 https://ui.adsabs.harvard.edu/abs/1995JGR...10024187R/abstract#:~:text=Among%20the%20manifestations%20of%20extensional%20processes%20affecting%20continental,rifts%20in%20zones%20of%20regional%20compression%20%28Tibetan%20grabens%29.
    Sandwell, D. T., Smith, W. H. F., 1997. Marine Gravity Anomaly from Geosat and ERS 1 Satellite Altimetry. Journal of Geophysical Research, 102(B5): 10039–10054 doi: 10.1029/96JB03223
    Smith, W. H. F., Sandwell, D. T., 1997. Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings. Science, 277(5334): 1956–1962 doi: 10.1126/science.277.5334.1956
    Sun, Z., Pang, X., Zhong, Z. H., et al., 2005. Dynamics of Tertiary Tectonic Evolution of the Baiyun Sag in the Pearl River Mouth Basin. Earth Science Frontiers, 12(4): 489–498 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200504024.htm
    Sun, Z., Zhong, Z. H., Zhou, D., 2007. The Analysis and Analogue Modeling of the Tectonic Evolution and Strong Subsidence in the Yinggehai Basin. Earth Science—Journal of China University of Geosciences, 32(3): 347–356 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200703006.htm
    Taylor, B., Hayes, D. E., 1980. The Tectonic Evolution of the South China Sea Basin: The Tectonic Geologic Evolution of Southeast Asian Seas and Islands. Geophysical Monograph Series, 23: 89–104 http://ci.nii.ac.jp/naid/10007428136
    Taylor, B., Hayes, D. E., 1983. Origin and History of the South China Sea Basin. Geophysical Monograph Series, 27: 23–56
    Turcotte, D., Schubert, G., 2002. Geodynamics. 2nd Edition. Cambridge University Press, Cambridge, UK. 456
    Xu, Y. S., Shankland, T. J., Linhardt, S., et al., 2004. Thermal Diffusivity and Conductivity of Olivine, Wadsleyite and Ringwoodite to 20 GPa and 1 373 K. Physics of the Earth and Planetary Interiors, 143–144: 321–336 http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0031920104001347&originContentFamily=serial&_origin=article&_ts=1483848717&md5=be1e459e0507c24ff742445c81f54a58
    Yao, B. C., 1996. Tectonic Evolution of the South China Sea in Cenozoic. Marine Geology & Quaternary Geology, 16(2): 1–13 (in Chinese with English Abstract) http://en.cnki.com.cn/article_en/cjfdtotal-hydz602.000.htm
    Yao, B. C., 2003. Deformation Characteristics of Continental Lithosphere When Rifting and Breaking-up. Marine Geology & Quaternary Geology, 22(3): 59–67 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200203010.htm
    Yao, B. C., Hayes, D. E., 1998. Lithospheric Deformation under the Effect of an Extensional Stress Field. Journal of the Geological Society of China, 41(4): 517–534
    Yao, B. C., Wan, L., 2006. The Three-Dimensional Structure of Lithosphere and Its Evolution in the South China Sea. Geological Publishing House, Beijing. 223 (in Chinese)
    Yao, B. C., Zeng, W. J., Chen, Y. Z., et al., 1995. Seismic Reflective Characteristics of Mesozoic Sediments on the Eastern Continental Margin in the North of the South China Sea. Marine Geology & Quaternary Geology, 15(1): 81–90 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ501.007.htm
    Yao, B. C., Zeng, W. J., Hayes, D. E., et al., 1994. The Geological Memoir of South China Sea Surveyed Jointly by China & USA. Geological Publishing House, Beijing. 203 (in Chinese)
    Zeyen, H., Dererova, J., Bielik, M., 2002. Determination of the Continental Lithospheric Thermal Structure in the Western Carpathians: Integrated Modelling of Surface Heat Flow, Gravity Anomalies and Topography. Physics of the Earth and Planetary Interiors, 134(1–2): 89–104 http://www.sciencedirect.com/science/article/pii/S0031920102001553
    Zhang, J., Wang, J. Y., 2000a. The Deep Geodynamic Characteristic of Tectonic Extension of North Continental Margin of South China Sea. Science in China (Series D), 30(6): 561–567 (in Chinese)
    Zhang, J., Wang, J. Y., 2000b. The Deep Thermal Charateristic of Continental Margin of Northern South China Sea. Chinese Science Bulletin, 45(18): 1717–1722 (in Chinese) doi: 10.1007/BF02898994
    Zhang, J., Xiong, L. P., Wang, J. Y., 2001. Characteristics and Mechanism of Geodynamic Evolution of the South China Sea. Chinese Journal of Geophysics, 44(5): 602–609 (in Chinese with English Abstract) http://www.onacademic.com/detail/journal_1000038801977110_a9f0.html
    Zhou, D., Sun, Z., Chen, H. Z., et al., 2005. Mesozoic Lithofacies, Paleo-geography, and Tectonic Evolution of the South China Sea and Surrounding Areas. Earth Science Frontiers, 12(3): 204–218 (in Chinese with English Abstract) http://en.cnki.com.cn/article_en/cjfdtotal-rdhy200502002.htm
    Zhou, D., Wang, W. Y., Pang, L., et al., 2006. Mesozoic Subduction Zone of Northeast Region of South China Sea Based on the Geophysical Data. Science in China (Series D), 36(3): 209–218 (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-JDXG200605003.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views(923) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return