Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 20 Issue 1
Feb 2009
Turn off MathJax
Article Contents
Qiliang Sun, Shiguo Wu, Genshun Yao, Fuliang Lü. Characteristics and Formation Mechanism of Polygonal Faults in Qiongdongnan Basin, Northern South China Sea. Journal of Earth Science, 2009, 20(1): 180-192. doi: 10.1007/s12583-009-0018-z
Citation: Qiliang Sun, Shiguo Wu, Genshun Yao, Fuliang Lü. Characteristics and Formation Mechanism of Polygonal Faults in Qiongdongnan Basin, Northern South China Sea. Journal of Earth Science, 2009, 20(1): 180-192. doi: 10.1007/s12583-009-0018-z

Characteristics and Formation Mechanism of Polygonal Faults in Qiongdongnan Basin, Northern South China Sea

doi: 10.1007/s12583-009-0018-z
Funds:

the Formation Mechanism and Study on Geophysical Recognition Technology of Shallow Water Flow 2006AA09Z349

the CAS Knowledge Innovation Program KZCX2-YW-203

the National Basic Research Program of China 2007CB411703

the MLR National Petroleum Resource Strategic Target Survey and Evaluation Program 

the Taishan Scholarship Program of Shandong Province 

More Information
  • Corresponding author: Wu Shiguo, swu@ms.qdio.ac.cn
  • Received Date: 28 Oct 2008
  • Accepted Date: 01 Dec 2008
  • Based on high-resolution 3D seismic data, we document the polygonal faults within the Miocene Meishan (梅山) Formation and Huangliu (黄流) Formation of the Qiongdongnan (琼东南) basin, northern South China Sea. Within the seismic section and time coherent slice, densely distributed extensional faults with small throw and polygonal shape were identified in map view. The orientation of the polygonal faults is almost isotropic, indicating a non-tectonic origin. The deformation is clearly layer-bounded, with horizontal extension of 11.2% to 16%, and 13.2% on average. The distribution of polygonal faults shows a negative correlation with that of gas chimneys. The development of polygonal faults may be triggered by over-pressure pore fluid which is restricted in the fine-grained sediments of bathyal facies when the sediments is compacted by the burden above. The polygonal faults developed to balance the volumetric contraction and restricted extension. The product of hydrocarbon in the Meishan Formation may have contributed to the development of the polygonal faults. In the study area, it was thought that the petroleum system of the Neogene post-rift sequence is disadvantageous because of poor migration pathway. However, the discovery of polygonal faults in the Miocene strata, which may play an important role on the fluid migration, may change this view. A new model of the petroleum system for the study area is proposed.

     

  • loading
  • Berndt, C., 2005. Focused Fluid Flow in Passive Continental Margins. Philos. Trans. R. Soc. Lond., A, 363(1837): 2855–2871
    Büenz, S., Mienert, J., Berndt, C., 2003. Geological Controls on the Storegga Gas-Hydrate System of the Mid-Norwegian Continental Margin. Earth and Planetary Science Letters, 209(3–4): 291–307 http://www.noc.soton.ac.uk/gg/people/berndt/buenz-03.pdf
    Burst, J. F., 1965. Subaqueously Formed Shrinkage Cracks in Clay. Journal of Sedimentary Petrology, 35: 348–353
    Cartwright, J. A., 1994. Episodic Basin-Wide Hydrofracturing of Overpressured Early Cenozoic Mudrock Sequences in the North Sea Basin. Marine and Petroleum Geology, 11(5): 587–607 doi: 10.1016/0264-8172(94)90070-1
    Cartwright, J. A., Dewhurst, D. N., 1998. Layer-Bound Compaction Faults in Fine-Grained Sediments. Geological Society of America Bulletin, 110: 1242–1257 doi: 10.1130/0016-7606(1998)110<1242:LBCFIF>2.3.CO;2
    Cartwright, J. A., Lonergan, L., 1996. Volumetric Contraction during the Compaction of Mudrocks: A Mechanism for the Development of Regional-Scale Polygonal Fault Systems. Basin Research, 8(2): 183–193 doi: 10.1046/j.1365-2117.1996.01536.x
    Chen, H. H., Yao, S. Z., Wang, J. H., et al., 2002. Thermodynamic Modeling of Fluid-Bearing Natural Gas Inclusions for Geothermometer and Geobarometer of Overpressured Environments in Qiongdongnan Basin, South China Sea. Journal of China University of Geosciences, 13(3): 240–247 http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020415184395.html
    Dewhurst, D. N., Cartwright, J. A., Lonergan, L., 1999. The Development of Polygonal Fault Systems by Syneresis of Colloidal Sediments. Marine and Petroleum Geology, 16(8): 793–810 doi: 10.1016/S0264-8172(99)00035-5
    Dong, D. D., Wu, S. G., Zhang, G. C., et al., 2008. Rifting Process and Formation Mechanisms of Syn-rift Stage Prolongation in the Deepwater Basin, Northern South China Sea. Chin. Sci. Bull., 53(19): 2342–2351 doi: 10.1360/csb2008-53-19-2342
    Gay, A., Lopez, M., Berndt, C., et al., 2007. Geological Controls on Focused Fluid Flow Associated with Seafloor Seeps in the Lower Congo Basin. Marine Geology, 244(1–4): 68–92 http://www.noc.soton.ac.uk/gg/people/berndt/gay-07-b.pdf
    Gay, A., Lopez, M., Cochonat, P., et al., 2006a. Evidences of Early to Late Fluid Migration from an Upper Miocene Turbiditic Channel Revealed by 3D Seismic Coupled to Geochemical Sampling within Seafloor Pockmarks, Lower Congo Basin. Marine and Petroleum Geology, 23(3): 387–399 doi: 10.1016/j.marpetgeo.2006.02.004
    Gay, A., Lopez, M., Cochonat, P., et al., 2006b. Isolated Seafloor Pockmarks Linked to BSRs, Fluid Chimneys, Polygonal Faults and Stacked Oligocene-Miocene Turbiditic Palaeochannels in the Lower Congo Basin. Marine Geology, 226(1–2): 25–40 http://www.sciencedirect.com/science/article/pii/S0025322705003312
    Gay, A., Lopez, M., Cochonatz, P., et al., 2004. Polygonal Faults-Furrows System Related to Early Stages of Compaction-Upper Miocene to Recent Sediments of the Lower Congo Basin. Basin Research, 16(1): 101–116 doi: 10.1111/j.1365-2117.2003.00224.x
    Hansen, D. M., Cartwright, J., 2006. The Three-Dimensional Geometry and Growth of Forced Folds above Saucer-Shaped Igneous Sills. Journal of Structural Geology, 28(8): 1520–1535 doi: 10.1016/j.jsg.2006.04.004
    Hansen, D. M., Shimeld, J. W., Williamson, M. A., et al., 2004. Development of a Major Polygonal Fault System in Upper Cretaceous Chalk and Cenozoic Mudrocks of the Sable Subbasin, Canadian Atlantic Margin. Marine and Petroleum Geology, 21(9): 1205–1219 doi: 10.1016/j.marpetgeo.2004.07.004
    Henriet, J. P., Batist, D., Verschuren, M., 1991. Early Fracturing of Palaeogene Clays, Southernmost North Sea: Relevance to Mechanisms of Primary Hydrocarbon Migration. In: Spencer, A. M., ed., Generation, Accumulation and Production of Europe's Hydrocarbons. Spec. Pub. Eur. Assoc. Petrol. Geol. 1. Oxford University Press, Oxford. 217–227
    Hustoft, S., Mienert, J., Bünz, S., et al., 2007. High-Resolution 3D-Seismic Data Indicate Focused Fluid Migration Pathways above Polygonal Fault Systems of the Mid-Norwegian Margin. Marine Geology, 245(1–4): 89–106 http://www.onacademic.com/detail/journal_1000034097056010_7ed9.html
    Larter, S., Aplina, A. C., Bowlera, B., et al., 2000. A Drain in My Graben: An Integrated Study of the Heimdal Area Petroleum System. Journal of Geochemical Exploration, 69–70: 619–622 http://www.sciencedirect.com/science/article/pii/S0375674200000686
    Li, X. J., Wang, P. X., Xu, C. Z., et al., 2008. Clay Minerals Distribution in Surface Sediments in Western South China Sea and Provenance. Marine Geology & Quaternary Geology, 28(1): 9–16 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200801001.htm
    Lonergan, L., Cartwright, J. A., 1999. Polygonal Faults and Their Influence on Deep-Water Sandstone Reservoir Geometries, Alba Field, United Kingdom Central North Sea. AAPG Bulletin, 83(3): 410–432 doi: 10.1306/00aa9bba-1730-11d7-8645000102c1865d
    Luo, X. Vasseur, G., 2002. Natural Hydraulic Cracking: Numerical Model and Sensitivity Study. Earth Planet. Sci. Lett., 201(2): 431–446 doi: 10.1016/S0012-821X(02)00711-2
    Paola, N. D., Collettini, C., Trippetta, F., et al., 2007. A Mechanical Model for Complex Fault Patterns Induced by Evaporite Dehydration and Cyclic Changes in Fluid Pressure. Journal of Structural Geology, 29(10): 1573–1584 doi: 10.1016/j.jsg.2007.07.015
    Scherer, G. W., 1996. Influence of Viscoelasticity and Permeability on the Stress Response of Silica Gel. Langmuir, 12: 1109–1116 doi: 10.1021/la9503111
    Shoulders, S. J., Cartwright, J., Huuse, M., 2007. Large-Scale Conical Sandstone Intrusions and Polygonal Fault Systems in Tranche 6, Faroe-Shetland Basin. Marine and Petroleum Geology, 24(3): 173–188 doi: 10.1016/j.marpetgeo.2006.12.001
    Sun, Z., Zhong, Z. H., Zhou, D., et al., 2004. Experimental Constraints on Cenozoic Development of Ying-Qiong Basin in NW South China Sea. In: Clift, P., Wang, P., Kuhnt, W., et al., eds., Continent-Ocean Interactions within East Asian Marginal Seas. AGU Monograph Series, 149: 109–120
    Sun, Z., Zhou, D., Zhong, Z. H., et al., 2003. Experimental Evidence for the Dynamics of the Formation of the Yinggehai Basin, NW South China Sea. Tectonophysics, 372(1–2): 41–58 http://210.77.90.120/bitstream/344004/5545/1/Regime%20shifts%20in%20the%20North%20Pacific%20simulated%20by%20a%20COADS-driven%20Isopycnal%20model%20.pdf
    Trincardi, F., Cattaneo, A., Correggiari, A., et al., 2004. Evidence of Soft Sediment Deformation, Fluid Escape, Sediment Failure and Regional Weak Layers within the Late Quaternary Mud Deposits of the Adriatic Sea. Marine Geology, 213(1–4): 91–119 http://www.onacademic.com/detail/journal_1000034589268610_0cd8.html
    Victor, P., Moretti, I., 2006. Polygonal Fault Systems and Channel Boudinage: 3D Analysis of Multidirectional Extension in Analogue Sandbox Experiments. Marine and Petroleum Geology, 23: 777–789 doi: 10.1016/j.marpetgeo.2006.06.004
    Wan, S. M., Li, A. C., Clift, P. D., et al., 2007. Development of the East Asian Monsoon: Mineralogical and Sedimentologic Records in the Northern South China Sea since 20 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(3–4): 561–582
    Wan, S. M., Li, A. C., Xu, K. H., et al., 2008. Characteristics of Clay Minerals in the Northern South China Sea and Its Implications for Evolution of East Asian Monsoon since Miocene. Journal of China University of Geosciences, 19(1): 23–37 doi: 10.1016/S1002-0705(08)60021-7
    Wu, S. G., Han, Q. H., Ma, Y. B, et al., 2009a. Petroleum System in Deepwater Basins of the Northern South China Sea. Journal of Earth Science, 20(1): 124–135 doi: 10.1007/s12583-009-0014-3
    Wu, S. G., Sun, Q. L., Wu, T. Y., et al., 2009b. The Discovery of Polygonal Fault in Deep-Water Area of Qiongdongnan Basin and Its Petroleum Value. Acta Petrolei Sinica, 30(1): 21–28 (in Chinese with English Abstract) http://www.researchgate.net/publication/288656228_Polygonal_fault_and_oil-gas_accumulation_in_deep-water_area_of_Qiongdongnan_Basin
    Wu, S. G., Yuan, S. Q., Zhang, G., et al., 2008. Seismic Characteristics of a Reef Carbonate Reservoir and Implications for Hydrocarbon Exploration in Deep Water of the Qiongdongnan Basin, Northern South China Sea. Marine and Petroleum Geology, doi: 10.1016/j.marpetgeo.2008.04.008
    Yao, G. S., Yuan, S. Q., Wu, S. G., 2008. The Double Provenance Supply Depositional Model and Its Exploration Prospect in the Deepwater of Qiongdongnan Basin. Petroleum Exploration and Development, 35(6): 685–691 (in Chinese with English Abstract) doi: 10.1016/S1876-3804(09)60101-4
    Zhang, Q., Hao, F., 1997. Evolution of Ying-Qiong Basin and the Oil & Gas System. Science in China (Series D), 27(2): 149–154
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views(769) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return