Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 20 Issue 3
Jun 2009
Turn off MathJax
Article Contents
Derecke Palmer. Exploiting Lateral Resolution of Near-Surface Seismic Refraction Methods. Journal of Earth Science, 2009, 20(3): 526-545. doi: 10.1007/s12583-009-0044-x
Citation: Derecke Palmer. Exploiting Lateral Resolution of Near-Surface Seismic Refraction Methods. Journal of Earth Science, 2009, 20(3): 526-545. doi: 10.1007/s12583-009-0044-x

Exploiting Lateral Resolution of Near-Surface Seismic Refraction Methods

doi: 10.1007/s12583-009-0044-x
More Information
  • Corresponding author: Derecke Palmer, d.palmer@unsw.edu.au
  • Received Date: 17 Nov 2008
  • Accepted Date: 24 Feb 2009
  • The 1D τ-p inversion algorithm is widely employed to generate starting models with most computer programs that implement refraction tomography. However, this algorithm emphasizes the vertical resolution of many layers, and as a result, it frequently fails to detect even large lateral variations in seismic velocities, such as the decreases that are indicative of shear zones. This study presents a case that demonstrates the failure of the 1D τ-p inversion algorithm to define or even detect a major shear zone that is 50 m or ten stations wide. Furthermore, the majority of refraction tomography programs parameterize the seismic velocities within each layer with vertical velocity gradients. By contrast, the 2D generalized reciprocal method (GRM) inversion algorithms emphasize the lateral resolution of individual layers. This study demonstrates the successful detection and definition of the 50-m wide shear zone with the GRM inversion algorithms. The existence of the shear zone is corroborated by a 2D analysis of the head wave amplitudes and by numerous closely spaced orthogonal seismic profiles carried out as part of a later 3D refraction investigation. Furthermore, a 1D analysis of the head wave amplitudes indicates that a reversal in the seismic velocities, rather than vertical velocity gradients, occurs in the weathered layers. While all seismic refraction operations should aim to provide as accurate depth estimates as is practical, the major conclusion reached in this study is that refraction inversion algorithms that emphasize the lateral resolution of individual layers generate more useful results for geotechnical and environmental applications. The advantages of the improved lateral resolution are obtained with 2D profiles in which the structural features can be recognized from the magnitudes of the variations in the seismic velocities. Furthermore, the spatial patterns obtained with 3D investigations facilitate the recognition of structural features that do not display any intrinsic variation or "signature" in seismic velocities.

     

  • loading
  • Aki, K., Richards, P. G., 2002. Quantitative Seismology. University Science Books, New York
    Barton, P., Barker, N., 2003. Velocity Imaging by Tau-p Transformation of Refracted Seismic Traveltimes. Geophysical Prospecting, 51: 195–203 doi: 10.1046/j.1365-2478.2003.00365.x
    Berry, M. J., 1971. Depth Uncertainties from Seismic First-Arrival Refraction Studies. Journal of Geophysical Research, 76(26): 6464–6468 doi: 10.1029/JB076i026p06464
    Červený, V., Ravindra, R., 1971. Theory of Seismic Head Waves. University of Toronto Press, Toronto
    Chopra, S., Marfurt, K. J., 2007. Seismic Attributes for Prospect Identification and Reservoir Characterization. Geophysical Developments No. 11, SEG, Tulsa
    de Franco, R., 2005. Multi-refractor Imaging with Stacked Refraction Convolution Section. Geophysical Prospecting, 53(3): 335–348 doi: 10.1111/j.1365-2478.2005.00478.x
    Domzalski, W., 1956. Some Problems of Shallow Refraction Investigations. Geophysical Prospecting, 4(2): 140–166 doi: 10.1111/j.1365-2478.1956.tb01401.x
    Drijkoningen, G. G., 2000. The Usefulness of Geophone Ground-Coupling Experiments to Seismic Data. Geophysics, 65(6): 1780–1787 doi: 10.1190/1.1444862
    Hagedoorn, J. G., 1955. Templates for Fitting Smooth Velocity Functions to Seismic Refraction and Reflection Data. Geophysical Prospecting, 3: 325–338 doi: 10.1111/j.1365-2478.1955.tb01379.x
    Hagedoorn, J. G., 1959. The Plus-Minus Method of Interpret ing Seismic Refraction Sections. Geophysical Prospecting, 7(2): 158–182 doi: 10.1111/j.1365-2478.1959.tb01460.x
    Hagiwara, T., Omote, S., 1939. Land Creep at Mt Tyausu-Yama (Determination of Slip Plane by Seismic Prospecting). Tokyo University Earthquake Research Institute Bulletin, 17: 118–137 http://repository.dl.itc.u-tokyo.ac.jp/dspace/bitstream/2261/10427/1/ji0171011.pdf
    Hawkins, L. V., 1961. The Reciprocal Method of Routine Shallow Seismic Refraction Investigations. Geophysics, 26: 806–819 doi: 10.1190/1.1438961
    Healy, J. H., 1963. Crustal Structure along the Coast of California from Seismic-Refraction Measurements. Journal of Geophysical Research, 68(20): 5777–5787 doi: 10.1029/JZ068i020p05777
    Ivanov, J., Miller, R. D., Xia, J., et al., 2005a. The Inverse Problem of Refraction Travel Times, Part I: Types of Geophysical Nonuniqueness through Minimization. Pure and Applied Geophysics, 162(3): 447–459 doi: 10.1007/s00024-004-2615-1
    Ivanov, J., Miller, R. D., Xia, J., et al., 2005b. The Inverse Problem of Refraction Travel Times, Part II: Quantifying Refraction Nonuniqueness Using a Three-Layer Model. Pure and Applied Geophysics, 162(3): 461–477 doi: 10.1007/s00024-004-2616-0
    Lanz, E., Maurer, H., Green, A. G., 1998. Refraction Tomography over a Buried Waste Disposal Site. Geophysics, 63(4): 1414–1433 doi: 10.1190/1.1444443
    Menke, W., 1989. Geophysical Data Analysis: Discrete Inverse Theory. Academic Press, London
    Merrick, N. P., Odins, J. A., Greenhalgh, S. A., 1978. A Blind Zone Solution to the Problem of Hidden Layers within a Sequence of Horizontal or Dipping Refractors. Geophysical Prospecting, 26: 703–721 doi: 10.1111/j.1365-2478.1978.tb01630.x
    Nettleton, L. L., 1940. Geophysical Prospecting for Oil. Mcgraw-Hill Book Company, New York
    Oldenburg, D. W., 1984. An Introduction to Linear Inverse Theory. Trans. IEEE Geoscience and Remote Sensing, GE-22(6): 665–674
    Palmer, D., 1980. The Generalized Reciprocal Method of Seismic Refraction Interpretation. Society of Exploration Geophysicists, 104
    Palmer, D., 1981. An Introduction to the Generalized Reciprocal Method of Seismic Refraction Interpretation. Geophysics, 46: 1508–1518 doi: 10.1190/1.1441157
    Palmer, D., 1986. Refraction Seismics: The Lateral Resolution of Structure and Seismic Velocity. Geophysical Press, London
    Palmer, D., 1991. The Resolution of Narrow Low-Velocity Zones with the Generalized Reciprocal Method. Geophysical Prospecting, 39(8): 1031–1060 doi: 10.1111/j.1365-2478.1991.tb00358.x
    Palmer, D., 1992. Is Forward Modeling as Efficacious as Minimum Variance for Refraction Inversion? Exploration Geophysics, 23: 261–266, 521 doi: 10.1071/EG992261
    Palmer, D., 2001a. Imaging Refractors with the Convolution Section. Geophysics, 66: 1582–1589 doi: 10.1190/1.1487103
    Palmer, D., 2001b. Resolving Refractor Ambiguities with Amplitudes. Geophysics, 66(5): 1590–1593 doi: 10.1190/1.1487104
    Palmer, D., 2001c. Measurement of Rock Fabric in Shallow Refraction Seismology. Exploration Geophysics, 32: 907–914
    Palmer, D., 2003. Application of Amplitudes in Shallow Seismic Refraction Inversion. 16th ASEG Conference and Exhibition, Adelaide (Abstract)
    Palmer, D., 2006. Refraction Traveltime and Amplitude Corrections for Very Near-Surface Inhomogeneities. Geophysical Prospecting, 54(5): 589–604 doi: 10.1111/j.1365-2478.2006.00567.x
    Palmer, D., 2008a. Non-Uniqueness in Near-Surface Refraction Inversion. In: Xu, Y. X., Xia, J. H., eds., Proceedings of the 3rd International Conference on Environmental and Engineering Geophysics, Wuhan, China. Science Press, Beijing. 42–54
    Palmer, D., 2008b. Is It Time to Re-engineer Geotechnical Seismic Refraction Methods? In: Xu, Y. X., Xia, J. H., eds., Proceedings of the 3rd International Conference on Environmental and Engineering Geophysics, Wuhan, China. Science Press, Beijing. 29–41
    Palmer, D., 2009. Integrating Short and Long Wavelength Time and Amplitude Statics. First Break (Preprint)
    Palmer, D., Jones, L., 2005. A Simple Approach to Refraction Statics with the Generalized Reciprocal Method and the Refraction Convolution Section. Exploration Geophysics, 36(1): 18–25 doi: 10.1071/EG05018
    Palmer, D., Nikrouz, R., Spyrou, A., 2005. Statics Corrections for Shallow Seismic Refraction Data. Exploration Geophysics, 36: 7–17 doi: 10.1071/EG05007
    Palmer, D., Shadlow, J., 2008. Integrating Long and Short Wavelength Statics with the Generalized Reciprocal Method and the Refraction Convolution Section. Exploration Geophysics, 39: 139–147 doi: 10.1071/EG08019
    Ruijtenberg, P. A., Buchanan, R., Marke, P., 1992. Three-Dimensional Data Improve Reservoir Mapping. In: Sheriff, R. E., ed., Reservoir Geophysics. SEG, Tulsa. 122–130
    Schuster, G. T., Quintus-Bosz, A., 1993. Wavepath Eikonal Traveltime Inversion: Theory. Geophysics, 58: 1314–1323 doi: 10.1190/1.1443514
    Sjögren, B., 2000. A Brief Study of the Generalized Reciprocal Method and Some Limitations of the Method. Geophysical Prospecting, 487: 815–834 doi: 10.1046/j.1365-2478.2000.00223.x
    Slichter, L. B., 1932. The Theory of the Interpretation of Seismic Travel-Time Curves in Horizontal Structures. Physics., 3: 273–295 doi: 10.1063/1.1745133
    Stefani, J. P., 1995. Turning-Ray Tomography. Geophysics, 60: 1917–1929 doi: 10.1190/1.1443923
    Treitel, S., Lines, L., 1988. Geophysical Examples of Inversion (with a Grain of Salt). The Leading Edge, 7(11): 32–35 doi: 10.1190/1.1439464
    Whiteley, R. J., 1986. Electrical and Seismic Response of Shallow Volcanogenic Massive Sulphide Ore Deposits: [Dissertation]. University of New South Wales, Sydney. 393
    Whiteley, R. J., Greenhalgh, S. A., 1979. Velocity Inversion and the Shallow Seismic Refraction Method. Geoexploration, 17: 125–141 doi: 10.1016/0016-7142(79)90036-X
    Zhang, J., Toksöz, M. N., 1998. Nonlinear Refraction Traveltime Tomography. Geophysics, 63(5): 1726–1737 doi: 10.1190/1.1444468
    Zhu, X., Sixta, D. P., Andstman, B. G., 1992. Tomostatics: Turning-Ray Tomography + Static Corrections. The Leading Edge, 11(12): 15–23 doi: 10.1190/1.1436864
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(23)  / Tables(1)

    Article Metrics

    Article views(927) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return