Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 20 Issue 3
Jun 2009
Turn off MathJax
Article Contents
Jianghai Xia, Richard D Miller, Yixian Xu, Yinhe Luo, Chao Chen, Jiangping Liu, Julian Ivanov, Chong Zeng. High-Frequency Rayleigh-Wave Method. Journal of Earth Science, 2009, 20(3): 563-579. doi: 10.1007/s12583-009-0047-7
Citation: Jianghai Xia, Richard D Miller, Yixian Xu, Yinhe Luo, Chao Chen, Jiangping Liu, Julian Ivanov, Chong Zeng. High-Frequency Rayleigh-Wave Method. Journal of Earth Science, 2009, 20(3): 563-579. doi: 10.1007/s12583-009-0047-7

High-Frequency Rayleigh-Wave Method

doi: 10.1007/s12583-009-0047-7
Funds:

Kansas Geological Survey 

The University of Kansas and China University of Geosciences 

More Information
  • Corresponding author: Jianghai Xia, jxia@kgs.ku.edu
  • Received Date: 31 Oct 2008
  • Accepted Date: 17 Dec 2008
  • High-frequency (≥2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution.

     

  • loading
  • Abbiss, C. P., 1981. Shear Wave Measurements of the Elasticity of the Ground. Géotechnique, 31(1): 91–104 doi: 10.1680/geot.1981.31.1.91
    Babuska, V., Cara, M., 1991. Seismic Anisotropy in the Earth. Kluwer Academic Publishers, Boston. 217
    Backus, G. E., Gilbert, J. F., 1970. Uniqueness in the Inversion of Inaccurate Gross Earth Data. Phil. Trans. Roy. Soc. London, Ser., A, 266: 123–192 doi: 10.1098/rsta.1970.0005
    Beaty, K. S., Schmitt, D. R., Sacchi, M., 2002. Simulated Annealing Inversion of Multimode Rayleigh-Wave Dispersion Curves for Geological Structure. Geophys. J. Int. , 151(2): 622–631 doi: 10.1046/j.1365-246X.2002.01809.x
    Calderón-Macías, C., Luke, B., 2007. Addressing Nonuniqueness in Inversion of Rayleigh-Wave Data for Shallow Profiles Containing Stiff Layers. Geophysics, 72(1): U1–U10 doi: 10.1190/1.2374854
    Chen, C., Liu, J., Xia, J., et al., 2006. Integrated Geophysical Techniques in Detecting Hidden Dangers in River Embankments. Journal of Environmental and Engineering Geophysics, 11(2): 83–94 doi: 10.2113/JEEG11.2.83
    Clayton, C. R. I., 1993. The Standard Penetration Test (SPT): Methods and Use: Construction Industry Research and Information Association. Funder Report CP/7, London. 129
    Clayton, C. R. I., Matthews, M. C., Simons, N. E., 1995. Site Investigation. Blackwell Science, Oxford. 584
    Coruh, C., 1985. Stretched Automatic Amplitude Adjustment of Seismic Data. Geophysics, 50(2): 252–256 doi: 10.1190/1.1441915
    Dobry, R., Borcherdt, R. D., Crouse, C. B., et al., 2000. New Site Coefficients and Site Classification System Used in Recent Building Seismic Code Provisions. Earthquake Spectra, 16(11): 41–67 http://www.onacademic.com/detail/journal_1000036618642210_e9b3.html
    Dorman, J., Ewing, M., 1962. Numerical Inversion of Seismic Surface Wave Dispersion Data and Crust-Mantle Structure in the New York-Pennsylvania Area. Journal of Geophysical Research, 67(9): 3554 http://www.onacademic.com/detail/journal_1000035783676410_c598.html
    Forbriger, T., 2003. Inversion of Shallow-Seismic Wavefields: I. Wavefield Transformation. Geophys. J. Int. , 153(3): 719–734 doi: 10.1046/j.1365-246X.2003.01929.x
    Garland, G. D., 1979. Introduction to Geophysics: Mantle, Core and Crust. 2nd Edition. W. B. Saunders Company, Philadelphia. 494
    Imai, T., Tonouchi, K., 1982. Correlation of N-Value with S-Wave Velocity and Shear Modulus. Proceedings of the Second European Symposium on Penetration Testing. 67–72 http://www.researchgate.net/publication/282677738_Correlation_of_N_value_with_S-wave_velocity_and_shear_modulus
    Ivanov, J., Miller, R. D., Lacombe, P., et al., 2006a. Delineating a Shallow Fault Zone and Dipping Bedrock Strata Using Multichannal Analysis of Surface Waves with a Land Streamer. Geophysics, 71(5): A39–A42 doi: 10.1190/1.2227521
    Ivanov, J., Miller, R. D., Xia, J., et al., 2006b. Joint Analysis of Refractions with Surface Waves: An Inverse Solution to the Refraction-Traveltime Problem. Geophysics, 71(6): R131–R138 doi: 10.1190/1.2360226
    Jin, S., Cambois, G., Vuilermoz, C., 2000. Shear-Wave Velocity and Density Estimation from PS-Wave AVO Analysis: Application to an OBS Dataset from the North Sea. Geophysics, 65(5): 1446–1454 doi: 10.1190/1.1444833
    Liang, Q., Chen, C., Zeng, C., et al., 2008. Inversion Stability Analysis of Multimode Rayleigh Wave Dispersion Curves Using Low-Velocity-Layer Models. Near Surface Geophysics, 6(3): 157–165 doi: 10.3997/1873-0604.2007040
    Lu, L., Wang, C., Zhang, B., 2007. Inversion of Multimode Rayleigh Waves in the Presence of a Low Velocity Layer: Numerical and Laboratory Study. Geophys. J. Int. , 168(3): 1235–1246 doi: 10.1111/j.1365-246X.2006.03258.x
    Luo, Y., Xia, J., Liu, J., et al., 2007. Joint Inversion of High-Frequency Surface Waves with Fundamental and Higher Modes. Journal of Applied Geophysics, 62(4): 375–384 doi: 10.1016/j.jappgeo.2007.02.004
    Luo, Y., Xia, J., Miller, R. D., et al., 2008a. Rayleigh-Wave Dispersive Energy Imaging by High-Resolution Linear Radon Transform. Pure and Applied Geophysics, 165(5): 903–922 doi: 10.1007/s00024-008-0338-4
    Luo, Y., Xia, J., Liu, J., et al., 2008b. Generation of a Pseudo-2D Shear-Wave Velocity Section by Inversion of a Series of 1D Dispersion Curves. Journal of Applied Geophysics, 64(3–4): 115–124 http://www.onacademic.com/detail/journal_1000034078540110_e860.html
    Luo, Y., Xia, J., Miller, R. D., et al., 2008c. Rayleigh-Wave Dispersive Energy Imaging and Mode Separating by High-Resolution Linear Radon Transform. Proceedings of the 2008 International Conference on Environmental and Engineering Geophysics (ICEEG), June 15–20, Wuhan, China. 81–86
    Luo, Y., Xia, J., Xu, Y., et al., 2008d. Rayleigh-Wave Dispersive Energy Imaging and Mode Separating by High-Resolution Linear Radon Transform. The Leading Edge, 27(11): 1536–1542 doi: 10.1190/1.3011026
    Luo, Y., Xia, J., Liu, J., et al., 2009a. Research on the Middle-of-Receiver-Spread Assumption of the MASW Method. Soil Dynamics and Earthquake Engineering, 29(1): 71–79 doi: 10.1016/j.soildyn.2008.01.009
    Luo, Y., Xia, J., Xu, Y., et al., 2009b. Dipping Interface Mapping Using Mode-Separated Rayleigh Waves. Pure and Applied Geophysics, 166(3): 353–374 doi: 10.1007/s00024-009-0451-z
    Marquardt, D. W., 1963. An Algorithm for Least Squares Estimation of Nonlinear Parameters. Jour. Soc. Indus. Appl. Math. , 2: 431–441 http://www.genetics.org/external-ref?access_num=10.1137/0111030&link_type=DOI
    Matthews, M. C., Hope, V. S., Clayton, C. R. I., 1996. The Use of Surface Waves in the Determination of Ground Stiffness Profiles. Proc. Instn. Civ. Engrs., Geotechnical Engineering, 119: 84–95 doi: 10.1680/igeng.1996.28168
    Mayne, W. H., 1962. Horizontal Data Stacking Techniques. Supplement to Geophysics, 27: 927–937
    McMechan, G. A., Yedlin, M. J., 1981. Analysis of Dispersive Waves by Wave Field Transformation. Geophysics, 46(6): 869–874 doi: 10.1190/1.1441225
    Menke, W., 1984. Geophysical Data Analysis-Discrete Inversion Theory. Academic Press, Inc., New York. 260
    Miller, R. D., Xia, J., 1999. Feasibility of Seismic Techniques to Delineate Dissolution Features in the Upper 600 ft at Alabama Electric Cooperative's Proposed Damascus Site, Interim Report. Kansas Geological Survey, Open-File Report 99-3
    Miller, R. D., Xia, J., Park, C. B., et al., 1999. Multichannel Analysis of Surface Waves to Map Bedrock. The Leading Edge, 18: 1392–1396 doi: 10.1190/1.1438226
    Minster, J. B., Jordan, T. J., Molnar, P., et al., 1974. Numerical Modeling of Instantaneous Plate Tectonics. Geophys. J. Roy. Astron. Soc. , 36: 541–576 doi: 10.1111/j.1365-246X.1974.tb00613.x
    Moro, G. D., Pipan, M., Forte, E., et al., 2003. Determination of Rayleigh Wave Dispersion Curves for Near Surface Applications in Unconsolidated Sediments. Technical Program with Biographies, the 73rd Annual Meeting of the Society of Exploration Geophysicists, Dallas, TX. 1247–1250
    Nazarian, S., Stokoe, K. H. II, Hudson, W. R., 1983. Use of Spectral Analysis of Surface Waves Method for Determination of Moduli and Thicknesses of Pavement Systems. Transportation Research Record, (930): 38–45 http://www.researchgate.net/publication/279671121_Use_of_spectral_analysis_of_surface_waves_method_for_determination_of_moduli_and_thicknesses_of_pavement_systems
    Park, C. B., Miller, R. D., Xia, J., 1998. Imaging Dispersion Curves of Surface Waves on Multi-channel Record. Technical Program with Biographies, the 68th Annual Meeting of the Society of Exploration Geophysicists, New Orleans, Louisiana. 1377–1380
    Park, C. B., Miller, R. D., Xia, J., 1999. Multi-Channel Analysis of Surface Waves. Geophysics, 64(3): 800–808 doi: 10.1190/1.1444590
    Putnam, N., Nasseri-Moghaddam, A., Kovin, O., et al., 2008. Preliminary Analysis Using Surface Wave Methods to Detect Shallow Manmade Tunnels. Symposium on the Application of Geophysics to Environmental and Engineering Problems (SAGEEP), Annual Meeting of the Environmental and Engineering Geophysical Society (EEGS), April 6–10, 2008, Philadelphia, PA. 679–688
    Rix, G. J., Leipski, A. E., 1991. Accuracy and Resolution of Surface Wave Inversion: Recent Advances in Instrumentation, Data Acquisition and Testing in Soil Dynamics. Geotechnical Special Publication, 29: 17–32 http://www.mendeley.com/research/accuracy-resolution-surface-wave-inversion/
    Rix, G. J., Lai, C. D., Spang, A. W. Jr., 2000. In Situ Measurement of Damping Ratio Using Surface Waves. Journal of Geotechnical and Geoenvironmental Engineering, 126(5): 472–480 doi: 10.1061/(ASCE)1090-0241(2000)126:5(472)
    Sabetta, F., Bommer, J., 2002. Modification of the Spectral Shapes and Subsoil Conditions in Eurocode 8. 12th European Conference on Earthquake Engineering: Paper Ref. 518
    Schwab, F. A., Knopoff, L., 1972. Fast Surface Wave and Free Mode Computations. In: Bolt, B. A., ed., Methods in Computational Physics. Academic Press, New York. 87–180
    Sêcoe, E., Pinto, P. S., 2002. Eurocode 8-Design Provisions for Geotechnical Structures. Special Lecture, 3rd Croatian Soil Mechanics and Geotechnical Engineering Conference, 2002 Hvar. CD-ROM
    Sheriff, R. E., 2002. Encyclopedic Dictionary of Applied Geophysics. 4th Ed. . Society of Exploration Geophysicists, Tulsa, OK. 429
    Sheriff, R. E., Geldart, L. P., 1983. Exploration Seismology (Volume 1): History, Theory, and Data Acquisition. Cambridge University Press, New York. 253
    Song, X., Gu, H., 2007. Utilization of Multimode Surface Wave Dispersion for Characterizing Roadbed Structure. Journal of Applied Geophysics, 63(2): 59–67 doi: 10.1016/j.jappgeo.2007.04.001
    Song, Y. Y., Castagna, J. P., Black, R. A., et al., 1989. Sensitivity of Near-Surface Shear-Wave Velocity Determination from Rayleigh and Love Waves. Technical Program with Biographies, the 59th Annual Meeting of the Society of Exploration Geophysicists, 59: 509–512 http://pdfs.semanticscholar.org/9c32/93d1f1f7f7b9363a1e15ec67d71fb0c6ae4c.pdf
    Steeples, D. W., Baker, G. S., Schmeissner, C., 1999. Toward the Autojuggie: Planting 72 Geophones in 2 Sec. Geophysical Research Letters, 26(8): 1085–1088 doi: 10.1029/1999GL900191
    Stokoe, K. H. II, Nazarian, S., 1983. Effectiveness of Ground Improvement from Spectral Analysis of Surface Waves. Proceeding of the Eighth European Conference on Soil Mechanics and Foundation Engineering, 1: 91–95 http://www.mendeley.com/research/effectiveness-ground-improvement-spectral-analysis-surface-waves/
    Stokoe, K. H. II, Wright, G. W., Bay, J. A., et al., 1994. Characterization of Geotechnical Sites by SASW Method. Geophysical Characterization of Sites. In: Woods, R. D., ed., ISSMFE Technical Committee #10, New Delhi. Oxford Publishers, Oxford. 15–25
    Tian, G., Steeples, D. W., Xia, J., et al., 2003a. Useful Resorting in Surface Wave Method with the Autojuggie. Geophysics, 68(6): 1906–1908 doi: 10.1190/1.1635043
    Tian, G., Steeples, D. W., Xia, J., et al., 2003b. Multichannel Analysis of Surface Wave Method with the Autojuggie. Soil Dynamics and Earthquake Engineering, 23(3): 243–247 http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0267726102002142&originContentFamily=serial&_origin=article&_ts=1434228329&md5=610f9b39a90088910348b4c62c58589d
    Tokimatsu, K., Kuwayama, S., Tamura, S., et al., 1991. Vs Determination from Steady State Rayleigh Wave Method. Soils and Foundations, 31(2): 153–163 doi: 10.3208/sandf1972.31.2_153
    Vardoulakis, I., Verttos, C., 1988. Dispersion Law of Rayleigh-Type Waves in a Compressible Gibson Half-Space. International Journal for Numerical and Analytical Methods in Geomechanics, 12(6): 639–655 doi: 10.1002/nag.1610120606
    Xia, J., Miller, R. D., Park, C. B., 1998. Construction of Vertical Section of Near-Surface Shear-Wave Velocity from Ground Roll. Technical Program, the Society of Exploration Geophysicists and the Chinese Petroleum Society Beijing 98' International Conference. 29–33
    Xia, J., Miller, R. D., Park, C. B., 1999. Estimation of Near-Surface Shear-Wave Velocity by Inversion of Rayleigh Wave. Geophysics, 64(3): 691–700 doi: 10.1190/1.1444578
    Xia, J., Miller, R. D., Park, C. B., 2000. Advantages of Calculating Shear-Wave Velocity from Surface Waves with Higher Modes. Technical Program with Biographies, the 70th Annual Meeting of the Society of Exploration Geophysicists, 70: 1295–1298
    Xia, J., Miller, R. D., Park, C. B., et al., 2002a. Comparing Shear-Wave Velocity Profiles Inverted from Multichannel Analysis of Surface Wave with Borehole Measurements. Soil Dynamics and Earthquake Engineering, 22(3): 181–190 doi: 10.1016/S0267-7261(02)00008-8
    Xia, J., Miller, R. D., Park, C. B., et al., 2002b. A Pitfall in Shallow Shear-Wave Refraction Surveying. Journal of Applied Geophysics, 51(1): 1–9 doi: 10.1016/S0926-9851(02)00197-0
    Xia, J., Miller, R. D., Park, C. B., et al., 2002c. Determining Q of Near-Surface Materials from Rayleigh Waves. Journal of Applied Geophysics, 51(2–4): 121–129 http://www.researchgate.net/profile/Jianghai_Xia/publication/222558435_Determining_Q_of_near-surface_materials_from_Rayleigh_waves/links/54eb46870cf2a0305193954a.pdf
    Xia, J., Miller, R. D., Park, C. B., et al., 2003. Inversion of High Frequency Surface Waves with Fundamental and Higher Modes. Journal of Applied Geophysics, 52(1): 45–57 doi: 10.1016/S0926-9851(02)00239-2
    Xia, J., Chen, C., Li, P. H., et al., 2004a. Delineation of a Collapse Feature in a Noisy Environment Using a Multichannel Surface Wave Technique. Géotechnique, 54(1): 17–27 doi: 10.1680/geot.2004.54.1.17
    Xia, J., Miller, R. D., Park, C. B., et al., 2004b. Utilization of High-Frequency Rayleigh Waves in Near-Surface Geophysics. The Leading Edge, 23(8): 753–759 doi: 10.1190/1.1786895
    Xia, J., Chen, C., Tian, G., et al., 2005. Resolution of High-Frequency Rayleigh-Wave Data. Journal of Environmental and Engineering Geophysics, 10(2): 99–110 doi: 10.2113/JEEG10.2.99
    Xia, J., Xu, Y., Chen, C., et al., 2006a. Simple Equations Guide High-Frequency Surface-Wave Investigation Techniques. Soil Dynamics and Earthquake Engineering, 26(5): 395–403 doi: 10.1016/j.soildyn.2005.11.001
    Xia, J., Xu, Y., Miller, R. D., et al., 2006b. Estimation of Elastic Moduli in a Compressible Gibson Half-Space by Inverting Rayleigh Wave Phase Velocity. Surveys in Geophysics, 27(1): 1–17 doi: 10.1007/s10712-005-7261-3
    Xia, J., Xu, Y., Miller, R. D., 2007a. Generating Image of Dispersive Energy by Frequency Decomposition and Slant Stacking. Pure and Applied Geophysics, 164(5): 941–956 doi: 10.1007/s00024-007-0204-9
    Xia, J., Nyquist, J. E., Xu, Y., et al., 2007b. Feasibility of Detecting Near-Surface Feature with Rayleigh-Wave Diffraction. Journal of Applied Geophysics, 62(3): 244–253 doi: 10.1016/j.jappgeo.2006.12.002
    Xia, J., Miller, R. D., Xu, Y., 2008a. Data-Resolution Matrix and Model-Resolution Matrix for Rayleigh-Wave Inversion Using a Damped Least-Square Method. Pure and Applied Geophysics, 165(7): 1227–1248 doi: 10.1007/s00024-008-0364-2
    Xia, J., Xu, Y., Miller, R. D., 2008b. Improvement and Assessment of a Damped Least-Square Solution of Rayleigh-Wave Inversion. Proceedings of the 2008 International Conference on Environmental and Engineering Geophysics (ICEEG), June 15–20, Wuhan, China. 20–28
    Xu, Y., Xia, J., Miller, R. D., 2006. Quantitative Estimation of Minimum Offset for Multichannel Surface-Wave Survey with Actively Exciting Source. Journal of Applied Geophysics, 59(2): 117–125 doi: 10.1016/j.jappgeo.2005.08.002
    Xu, Y., Xia, J., Miller, R. D., 2007. Numerical Investigation of Implementation of Air-Earth Boundary by Acoustic-Elastic Boundary Approach. Geophysics, 72(5): SM147–SM153 doi: 10.1190/1.2753831
    Xu, Y., Xia, J., Miller, R. D., 2009. Approximation to Cutoffs of Higher Modes of Rayleigh Waves for a Layered Earth Model. Pure and Applied Geophysics, 166(3): 339–351 doi: 10.1007/s00024-008-0443-4
    Yilmaz, Ö., 1987. Seismic Data Processing. Society of Exploration Geophysicists, Tulsa, OK. 526
    Yilmaz, Ö., Eser, M., Berilgen, M., 2006. A Case Study of Seismic Zonation in Municipal Areas. The Leading Edge, 25(3): 319–330 doi: 10.1190/1.2184100
    Zhang, S. X., Chan, L. S., Xia, J., 2004. The Selection of Field Acquisition Parameters for Dispersion Images from Multichannel Surface Wave Data. Pure and Applied Geophysics, 161: 185–201 doi: 10.1007/s00024-003-2428-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views(942) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return