Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 21 Issue 3
Jun 2010
Turn off MathJax
Article Contents
Yuanyuan Li, Yushan Yang, Tianyou Liu. Derivative-Based Techniques for Geological Contact Mapping from Gravity Data. Journal of Earth Science, 2010, 21(3): 358-364. doi: 10.1007/s12583-010-0099-8
Citation: Yuanyuan Li, Yushan Yang, Tianyou Liu. Derivative-Based Techniques for Geological Contact Mapping from Gravity Data. Journal of Earth Science, 2010, 21(3): 358-364. doi: 10.1007/s12583-010-0099-8

Derivative-Based Techniques for Geological Contact Mapping from Gravity Data

doi: 10.1007/s12583-010-0099-8
Funds:

the Ph.D. Program Foundation of Ministry of Education of China for Distinguished Young Scholars 200804911523

the Research Foundation for Outstanding Young Teachers, China University of Geosciences CUGQNL0726

More Information
  • Corresponding author: Yuanyuan Li, liyuanyuan@cug.edu.cn
  • Received Date: 09 Oct 2009
  • Accepted Date: 10 Jan 2010
  • Publish Date: 01 Jun 2010
  • Gravity anomalies illuminate subsurface lithology and geological structure in three dimensions, which is vital for studies of concealed faults, sedimentary basins, basement lithology, and other geological targets. Although not all geological contacts correspond to lithological contacts, the contact mapping provides key information on structural regimes, deformation styles and trends. Many techniques for contact mapping have been developed. Here, we evaluate five methods applied to gridded data. The first two are the horizontal gradient magnitude of the gravity field (GFhgm), and tilt (TIhgm). The third and fourth rely on locating maxima of the analytic signal (AS) and the 3D local wavenumber (LW). The fifth is normalized standard deviation (NSTD) method. In this article, we evaluate the use of these five methods for mapping contacts and compare the results. First, synthetic vertically-sided models are used to quantify the offsets of maxima from the true contact location due to the source effects of finite source thickness, central depth, and width. Second, the effects of contact dip are discussed. Finally, a real data set is used to evaluate the ability of each method to produce maps of coherent contact trends in the presence of noise and gridding artifacts.

     

  • loading
  • Blakely, R. J., Simpson, R. W., 1986. Approximating Edges of Source Bodies from Magnetic or Gravity Anomalies. Geophysics, 51(7): 1494–1498 doi: 10.1190/1.1442197
    Cooper, G. R. J., Cowan, D. R., 2008. Edge Enhancement of Potential-Field Data Using Normalized Statistics. Geophysics, 73(3): H1–H4 doi: 10.1190/1.2837309
    Dentith, M., Cowan, D., Tompkins, L., 2000. Enhancement of Subtle Features in Aeromagnetic Data. Exploration Geophysics, 31(1–2): 104–108
    Fedi, M., Florio, G., 2001. Detection of Potential Field Source Boundaries by Enhanced Horizontal Derivative Method. Geophysical Prospecting, 49(1): 40–58 doi: 10.1046/j.1365-2478.2001.00235.x
    Grauch, V. J. S., Cordell, L., 1987. Limitations of Determining Density or Magnetic Boundaries from the Horizontal Gradient of Gravity or Pseudogravity Data. Geophysics, 52(1): 118–121 doi: 10.1190/1.1442236
    Hsu, S. K., Sibuet, J. C., Shyu, C. T., 1996. High-Resolution Detection of Geologic Boundaries from Potential-Field Anomalies: An Enhanced Analytic Signal Technique. Geophysics, 61(2): 373–386 doi: 10.1190/1.1443966
    Li, X., 2006. Understanding 3D Analytic Signal Amplitude. Geophysics, 71(2): L13–L16 doi: 10.1190/1.2184367
    Liu, T. Y., 2007. New Data Processing Methods for Potential Field Exploration. Science Press, Beijing (in Chinese)
    Liu, T. Y., Wu, Z. C., Zan, Y. L., et al., 2007. Wavelet Multi-scale Decomposition of Magnetic Anomaly and Its Application in Searching for Deep-Buried Minerals in Crisis Mines: A Case Study from Daye Iron Mines. Earth Science—Journal of China University of Geosciences, 32(1): 135–140 (in Chinese with English Abstract)
    Li, Y. Y., Yang, Y. S., 2009. Derivative-Based Normalized Standard Deviation of Potential Field Data in Geological Contact Mapping. Geological Science and Technology Information, 28(5): 138–142 (in Chinese with English Abstract)
    Miller, H. G., Singh, V., 1994. Potential Field Tilt-A New Concept for Location of Potential Field Sources. Journal of Applied Geophysics, 32(2–3): 213–217
    Nabighian, M. N., 1972. The Analytic Signal of Two-Dimensional Magnetic Bodies with Polygonal Cross-Section: Its Properties and Use for Automated Anomaly Interpretation. Geophysics, 37(3): 507–517 doi: 10.1190/1.1440276
    Nabighian, M. N., 1984. Toward a Three-Dimensional Automatic Interpretation of Potential Field Data via Generalized Hilbert Transforms: Fundamental Relations. Geophysics, 49(6): 780–786 doi: 10.1190/1.1441706
    Phillips, J., 2000. Locating Magnetic Contacts: A Comparison of the Horizontal Gradient, Analytic Signal, and Local Wavenumber Methods. 70th Annual International Meeting, Society of Exploration Geophysics, Expanded Abstracts. Calgary, Canada. 402–405
    Phillips, J. D., Hansen, R. O., Blakely, R. J., 2007. The Use of Curvature in Potential-Field Interpretation. Exploration Geophysics, 38(2): 111–119 doi: 10.1071/EG07014
    Pilkington, M., 2007. Locating Geologic Contacts with Magnitude Transforms of Magnetic Data. Journal of Applied Geophysics, 63(2): 80–89 doi: 10.1016/j.jappgeo.2007.06.001
    Pilkington, M., Keating, P., 2004. Contact Mapping from Gridded Magnetic Data-A Comparison of Techniques. Exploration Geophysics, 35(4): 306–311 doi: 10.1071/EG04306
    Roest, W. R., Verhoef, J., Pilkington, M., 1992. Magnetic Interpretation Using the 3-D Analytic Signal. Geophysics, 57(1): 116–125 doi: 10.1190/1.1443174
    Smith, R. S., Thurston, J. B., Dai, T. F., et al., 1998. ISPI-The Improved Source Parameter Imaging Method. Geophysical Prospecting, 46(2): 141–151 doi: 10.1046/j.1365-2478.1998.00084.x
    Thurston, J. B., Smith, R. S., 1997. Automatic Conversion of Magnetic Data to Depth, Dip, and Susceptibility Contrast Using the SPI (TM) Method. Geophysics, 62(3): 807–813 doi: 10.1190/1.1444190
    Thurston, J. B., Smith, R. S., Guillon, J. C., 2002. A Multimodel Method for Depth Estimation from Magnetic Data. Geophysics, 67(2): 555–561 doi: 10.1190/1.1468616
    Verduzco, B., Fairhead, J. D., Green, C. M., et al., 2004. New Insights to Magnetic Derivatives for Structural Mapping. The Leading Edge, 23(2): 116–119 doi: 10.1190/1.1651454
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views(581) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return