Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 21 Issue 5
Oct 2010
Turn off MathJax
Article Contents
Tomohiro Ohuchi, Takaaki Kawazoe, Norimasa Nishiyama, Yu Nishihara, Tetsuo Irifune. Technical Development of Simple Shear Deformation Experiments Using a Deformation-DIA Apparatus. Journal of Earth Science, 2010, 21(5): 523-531. doi: 10.1007/s12583-010-0110-4
Citation: Tomohiro Ohuchi, Takaaki Kawazoe, Norimasa Nishiyama, Yu Nishihara, Tetsuo Irifune. Technical Development of Simple Shear Deformation Experiments Using a Deformation-DIA Apparatus. Journal of Earth Science, 2010, 21(5): 523-531. doi: 10.1007/s12583-010-0110-4

Technical Development of Simple Shear Deformation Experiments Using a Deformation-DIA Apparatus

doi: 10.1007/s12583-010-0110-4
Funds:

the Global COE Program of Ehime University "Deep Earth Mineralogy" 

More Information
  • Corresponding author: Tomohiro Ohuchi, ohuchi@sci.ehime-u.ac.jp
  • Received Date: 20 Mar 2010
  • Accepted Date: 19 May 2010
  • Publish Date: 01 Oct 2010
  • Technical developments for simple shear deformation experiments at high pressures were made. The newly designed cell assembly can be compressed by deformation-DIA apparatuses with the MA 6-6 system, which consists of six second-stage tungsten carbide anvils (with a truncated edge length of 5 mm) and the anvil guide. Deformation of samples was barely observed during the compression process, showing that the shear strain of the deformed samples can be measured by the rotation of a strain marker. Simple shear deformation experiments on anhydrous and hydrous olivine aggregates were conducted under upper mantle conditions (pressures of 5.2–7.6 GPa and temperatures of 1 473–1 573 K), and sample deformation with a shear strain of γ=0.8−1.2 was successfully achieved at a shear strain rate of 4.0×10−5−7.5×10−5 s−1. The present study extended the pressure range of simple shear deformation experiments in the deformation-DIA apparatus from 3 GPa in an early study to 7.6 GPa at high temperatures.

     

  • loading
  • Ayers, J. C., Brenan, J. B., Watson, E. B., et al., 1992. A New Capsule Technique for Hydrothermal Experiments Using the Piston-Cylinder Apparatus. Am. Mineral. , 77: 1080–1086
    Bose, K., Ganguly, J., 1995. Quartz-Coesite Transition Revisited: Reversed Experimental Determination at 500–1 200 ℃ and Retrieved Thermochemical Properties. Am. Mineral. , 80(3–4): 231–238
    Couvy, H., Frost, D. J., Heidelbach, F., et al., 2004. Shear Deformation Experiments of Forsterite at 11 GPa-1 400 ℃ in the Multianvil Apparatus. Eur. J. Mineral. , 16: 877–889 doi: 10.1127/0935-1221/2004/0016-0877
    Frost, D. J., 2003. The Structure and Sharpness of (Mg, Fe)2SiO4 Phase Transformations in the Transition Zone. Earth Planet. Sci. Lett. , 216(3): 313–328 doi: 10.1016/S0012-821X(03)00533-8
    Jung, H., Karato, S. I., 2001a. Water-Induced Fabric Transitions in Olivine. Science, 293(5534): 1460–1462 doi: 10.1126/science.1062235
    Jung, H., Karato, S. I., 2001b. Effects of Water on Dynamically Recrystallized Grain-Size of Olivine. J. Struct. Geol. , 23(9): 1337–1344 doi: 10.1016/S0191-8141(01)00005-0
    Jung, H., Katayama, I., Jiang, Z., et al., 2006. Effect of Water and Stress on the Lattice-Preferred Orientation of Olivine. Tectonophys. , 421(1–2): 1–22 https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE01026376&language=ko_KR
    Karato, S. I., Rubie, D. C., 1997. Toward an Experimental Study of Deep Mantle Rheology: A New Multianvil Sample Assembly for Deformation Studies under High Pressures and Temperatures. J. Geophys. Res. , 102(B9): 20111–20122 doi: 10.1029/97JB01732
    Karato, S. I., Jung, H., 2003. Effects of Pressure on High-Temperature Dislocation Creep in Olivine. Philos. Mag. , 83(3): 401–414 doi: 10.1080/0141861021000025829
    Karato, S. I., Jung, H., Katayama, I., et al., 2008. Geodynamic Significance of Seismic Anisotropy of the Upper Mantle: New Insights from Laboratory Studies. Annu. Rev. Earth Planet. Sci. , 36: 59–95 doi: 10.1146/annurev.earth.36.031207.124120
    Kawazoe, T., Nishiyama, N., Nishihara, Y., et al., 2010. Deformation Experiment at P-T Conditions of the Mantle Transition Zone Using D-DIA Apparatus. Phys. Earth Planet. Inter., doi: 10.1016/j.pepi.2010.07.004
    Kohlstedt, D. L., Goetze, C., Durham, W. B., 1977. The Physics and Chemistry of Minerals and Rocks. Wiley, New York. 35–49 http://catalog.lib.kyushu-u.ac.jp/en/recordID/1000623715?hit=-1&caller=xc-search
    Kohlstedt, D. L., Keppler, H., Rubie, D. C., 1996. Solubility of Water in the α, β, γ Phases of (Mg, Fe)2SiO4. Contrib. Mineral. Petrol. , 123(4): 345–357 doi: 10.1007/s004100050161
    Li, L., Weidner, D., Raterron, P., et al., 2006. Deformation of Olivine at Mantle Pressure Using the D-DIA. Eur. J. Mineral. , 18: 7–19 doi: 10.1127/0935-1221/2006/0018-0007
    Litasov, K. D., Shatskiy, A. F., Pal-Yanov, Y. N., et al., 2009. Hydrogen Incorporation into Forsterite in Mg2SiO4-K2Mg(CO3)2-H2O and Mg2SiO4-H2O-C at 7.5–14.0 GPa. Russ. Geol. Geophys. , 50(12): 1129–1138 doi: 10.1016/j.rgg.2009.11.011
    Mackwell, S. J., Kohlstedt, D. L., Paterson, M. S., 1985. The Role of Water in the Deformation of Olivine Single Crystals. J. Geophys. Res. , 90: 11319–11333 doi: 10.1029/JB090iB13p11319
    Nishiyama, N., Wang, Y. B., Sanehira, T., et al., 2008. Development of the Multi-Anvil Assembly 6-6 for DIA and D-DIA Type High-Pressure Apparatuses. High Pressure Res. , 28(3): 307–314 doi: 10.1080/08957950802250607
    Ohuchi, T., Karato, S., Fujino, K., 2010. Strength of Single Crystal of Orthopyroxene under Lithospheric Conditions. Contrib. Mineral. Petrol., doi: 10.1007/s00410-010-0574-3
    Paterson, M. S., 1982. The Determination of Hydroxyl by Infrared Absorption in Quartz, Silicate Glasses and Similar Materials. Bull. Mineral. , 105(1): 20–29
    Raterron, P., Chen, J. H., Li, L., et al., 2007. Pressure-Induced Slip-System Transition in Forsterite: Single-Crystal Rheological Properties at Mantle Pressure and Temperature. Am. Mineral. , 92: 1436–1445 doi: 10.2138/am.2007.2474
    Raterron, P., Amiguet, E., Chen, J. H., et al., 2009. Experimental Deformation of Olivine Single Crystals at Mantle Pressures and Temperatures. Phys. Earth Planet. Inter. , 172(1–2): 74–83 https://www.sciencedirect.com/science/article/abs/pii/S0031920108001866
    Walte, N., Heidelbach, F., Miyajima, N., et al., 2007. Texture Development and TEM Analysis of Deformed CaIrO3: Implications for the D" Layer at the Core-Mantle Boundary. Geophys. Res. Lett. , 34(8): L08306, doi: 10.1029/2007GL029407
    Wang, Y. B., Durham, W. B., Getting, I. C., et al., 2003. The Deformation-DIA: A New Apparatus for High Temperature Triaxial Deformation to Pressures up to 15 GPa. Rev. Sci. Instrum. , 74(6): 3002–3011 doi: 10.1063/1.1570948
    Yagi, T., Akaogi, M., Shimomura, O., et al., 1987. In Situ Observation of the Olivine-Spinel Phase Transformation in Fe2SiO4 Using Synchrotron Radiation. J. Geophys. Res. , 92(B7): 6207–6213 doi: 10.1029/JB092iB07p06207
    Zhang, J., Li, B., Utsumi, W., et al., 1996. In Situ X-Ray Observations of the Coesite-Stishovite Transition: Reversed Phase Boundary and Kinetics. Phys. Chem. Min. , 23(1): 1–10
    Zhang, S. Q., Karato, S. I., 1995. Lattice Preferred Orientation of Olivine Aggregates in Simple Shear. Nature, 375(6534): 774–777 doi: 10.1038/375774a0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views(564) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return