Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 21 Issue 5
Oct 2010
Turn off MathJax
Article Contents
Yoshio Kono, Steeve Gréaux, Yuji Higo, Hiroaki Ohfuji, Tetsuo Irifune. Pressure and Temperature Dependences of Elastic Properties of Grossular Garnet up to 17 GPa and 1 650 K. Journal of Earth Science, 2010, 21(5): 782-791. doi: 10.1007/s12583-010-0112-2
Citation: Yoshio Kono, Steeve Gréaux, Yuji Higo, Hiroaki Ohfuji, Tetsuo Irifune. Pressure and Temperature Dependences of Elastic Properties of Grossular Garnet up to 17 GPa and 1 650 K. Journal of Earth Science, 2010, 21(5): 782-791. doi: 10.1007/s12583-010-0112-2

Pressure and Temperature Dependences of Elastic Properties of Grossular Garnet up to 17 GPa and 1 650 K

doi: 10.1007/s12583-010-0112-2
Funds:

the research proposal to SPring-8 by Y Kono 2007B1648

the Grant-in-Aid for Scientific Research from the Japanese Government to T Irifune 

More Information
  • Corresponding author: Yoshio Kono, kono@sci.ehime-u.ac.jp
  • Received Date: 22 Feb 2010
  • Accepted Date: 10 Apr 2010
  • Publish Date: 01 Oct 2010
  • Simultaneous ultrasonic elastic wave velocity and in situ synchrotron X-ray measurements on grossular garnet were carried out up to 17 GPa and 1 650 K. P- and S-wave velocities and bulk and shear modulus showed linear pressure and temperature dependence. These data yielded a pressure derivative of the bulk modulus of 4.42(7) and a shear modulus of 1.27(3), which are in good agreement with those of garnets with variable chemical compositions. Temperature dependence of the bulk modulus of grossular (−1.36×10−2 GPa/K) is also similar to that of other garnets, while the temperature dependence of the shear modulus of grossular (−1.11×10−2 GPa/K) is higher than those of magnesium end-member garnets and pyrolitic garnet.

     

  • loading
  • Bass, J. D., 1989. Elasticity of Grossular and Spessartite Garnets by Brillouin Spectroscopy. J. Geophys. Res. , 94(B6): 7621–7628 doi: 10.1029/JB094iB06p07621
    Birch, A. F., 1952. Elasticity and Constitution of the Earth's Interior. J. Geophys. Res. , 57(2): 227–286 doi: 10.1029/JZ057i002p00227
    Conrad, P. G., Zha, C. S., Mao, H. K., et al., 1999. The High-Pressure Single-Crystal Elasticity of Pyrope, Grossular, and Andradite. Am. Min. , 84: 374–383 doi: 10.2138/am-1999-0321
    Gwanmesia, G. D., Zhang, J. Z., Darling, K., et al., 2006. Elasticity of Polycrystalline Pyrope (Mg3Al2Si3O12) to 9 GPa and 1 000 ℃. Phys. Earth Planet. Inter. , 155(3–4): 179–190 https://www.sciencedirect.com/science/article/abs/pii/S0031920105002414
    Higo, Y., Inoue, T., Li, B. S., et al., 2006. The Effect of Iron on the Elastic Properties of Ringwoodite at High Pressure. Phys. Earth Planet. Inter. , 159(3–4): 276–285 https://www.sciencedirect.com/science/article/abs/pii/S0031920106002639
    Higo, Y., Kono, Y., Inoue, T., et al., 2009. A System for Measuring Elastic Wave Velocity under High Pressure and High Temperature Using a Combination of Ultrasonic Measurement and the Multi-anvil Apparatus at SPring-8. J. Synchrotron Rad. , 16: 762–768 doi: 10.1107/S0909049509034980
    Irifune, T., Higo, Y., Inoue, T., et al., 2008. Sound Velocities of Majorite Garnet and the Composition of the Mantle Transition Region. Nature, 451(7180): 814–817 doi: 10.1038/nature06551
    Isaak, D., Anderson, O. L., Oda, H., 1992. High-Temperature Thermal Expansion and Elasticity of Calcium-Rich Garnets. Phys. Chem. Minerals, 19(2): 106–120 doi: 10.1007/BF00198608
    Kono, Y., Higo, Y., Ohfuji, H., et al., 2007. Elastic Wave Velocities of Garnetite with a MORB Composition up to 14 GPa. Geophys. Res. Lett. , 34(14): L14308, doi: 10.1029/2007GL030312
    Li, B. S., Hung, J., Liebermann, R. C., 2004. Modern Techniques in Measuring Elasticity of Earth Materials at High Pressure and High Temperature Using Ultrasonic Interferometry in Conjunction with Synchrotron X-Radiation in Multi-anvil Apparatus. Phys. Earth Planet. Inter. , 143–144: 559–574 https://www.sciencedirect.com/science/article/abs/pii/S0031920104000883
    Nobes, R. H., Akhmatskaya, E. V., Milman, V., et al., 2000. Structure and Properties of Aluminosilicate Garnets and Katotite: An Ab Initio Study. Computational Materials Science, 17(2–4): 141–145 https://www.sciencedirect.com/science/article/abs/pii/S0927025600000112
    O'Neill, B., Bass, J. D., Rossman, G. R., et al., 1991. Elastic Properties of Pyrope. Phys. Chem. Minerals, 17(7): 617–621 doi: 10.1007/BF00203841
    O'Neill, B., Bass, J. D., Smyth, J. R., et al., 1989. Elasticity of a Grossular-Pyrope-Almandine Garnet. J. Geophys. Res. , 94(B12): 17819–17824 doi: 10.1029/JB094iB12p17819
    Olijnyk, H., Paris, E., Geiger, C. A., et al., 1991. Compressional Study of Katoite [Ca3Al2(O4H4)3] and Grossular Garnet. J. Geophys. Res. , 96(B9): 14313–14318 doi: 10.1029/91JB01180
    Pavese, A., Diella, V., Pischedda, V., et al., 2001. Pressure-Volume-Temperature Equation of State of Andradite and Grossular, by High-Pressure and -Temperature Powder Diffraction. Phys. Chem. Minerals, 28(4): 242–248 doi: 10.1007/s002690000144
    Rodehorst, U., Geiger, C. A., Armbruster, T., et al., 2002. The Crystal Structures of Grossular and Spessartine between 100 and 600 K and the Crystal Chemistry of Grossular-Spessartine Solid Solutions. Am. Min. , 87: 542–549 doi: 10.2138/am-2002-0417
    Sinelnikov, Y. D., Chen, G. L., Liebermann, R. C., 2004. Dual Mode Ultrasonic Interferometry in Multi-anvil High Pressure Apparatus Using Single-Crystal Olivine as the Pressure Standard. High Press. Res. , 24(1): 183–191 doi: 10.1080/08957950310001635800
    Sinogeikin, S. V., Bass, J. D., 2000. Single-Crystal Elasticity of Pyrope and MgO to 20 GPa by Brillouin Scattering in the Diamond Cell. Phys. Earth Planet. Inter. , 120(1–2): 43–62 https://www.sciencedirect.com/science/article/abs/pii/S0031920100001436
    Sinogeikin, S. V., Bass, J. D., 2002. Elasticity of Majorite and a Majorite-Pyrope Solid Solution to High Pressure: Implications for the Transition Zone. Geophys. Res. Lett. , 29(2): 1017, doi: 10.1029/2001GL013937
    Stixrude, L., Lithgow-Bertelloni, C., 2005. Thermodynamics of Mantle Minerals—I, Physical Properties. Geophys. J. Int. , 162(2): 610–632 doi: 10.1111/j.1365-246X.2005.02642.x
    Tsuchiya, T., 2003. First-Principles Prediction of the P-V-T Equation of State of Gold and the 660-km Discontinuity in Earth's Mantle. J. Geophys. Res. , 108(B10): 2462, doi: 10.1029/2003JB002446
    Wang, Y. B., Weidner, D. J., Zhang, J. Z., et al., 1998. Thermal Equation of State of Garnets along the Pyrope-Majorite Join. Phys. Earth Planet. Inter. , 105(1–2): 59–72 https://www.sciencedirect.com/science/article/abs/pii/S0031920197000721
    Weaver, J. S., Takahashi, T., Bass, J. D., 1976. Isothermal Compression of Grossular Garnets to 250 kbar and the Effect of Calcium on the Bulk Modulus. J. Geophys. Res. , 81(14): 2475–2482 doi: 10.1029/JB081i014p02475
    Zhang, L., Ashbahs, H., Kutoglu, A., et al., 1999. Single-Crystal Hydrostatic Compression of Synthetic Pyrope, Almandine, Spessartine, Grossular and Andradite Garnets at High Pressures. Phys. Chem. Minerals, 27(1): 52–58 doi: 10.1007/s002690050240
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views(539) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return