Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 21 Issue 5
Oct 2010
Turn off MathJax
Article Contents
Zhongyan Wang, Yonghong Zhao, David L. Kohlstedt. Dislocation Creep Accommodated by Grain Boundary Sliding in Dunite. Journal of Earth Science, 2010, 21(5): 541-554. doi: 10.1007/s12583-010-0113-1
Citation: Zhongyan Wang, Yonghong Zhao, David L. Kohlstedt. Dislocation Creep Accommodated by Grain Boundary Sliding in Dunite. Journal of Earth Science, 2010, 21(5): 541-554. doi: 10.1007/s12583-010-0113-1

Dislocation Creep Accommodated by Grain Boundary Sliding in Dunite

doi: 10.1007/s12583-010-0113-1
Funds:

the National Science Foundation of USA EAR-0910687

the National Natural Science Foundation of China 40874043

More Information
  • Corresponding author: Kohlstedt David L., dlkohl@umn.edu
  • Received Date: 04 Apr 2010
  • Accepted Date: 20 May 2010
  • Publish Date: 01 Oct 2010
  • To investigate the role of grain boundary sliding during dislocation creep of dunite, a series of deformation experiments were carried out under anhydrous conditions on fine-grained (~15 μm) samples synthesized from powdered San Carlos olivine and powdered San Carlos olivine+1.5 vol.% MORB. Triaxial compressive creep tests were conducted at a temperature of 1 473 K and confining pressures of 200 and 400 MPa using a high-resolution, gas-medium deformation apparatus. Each sample was deformed at several levels of differential stress between 100 and 250 MPa to yield strain rates in the range of 10−6 to 10−4 s−1. Under these conditions, the dominant creep mechanism involves the motion of dislocations, largely on the easy slip system (010)[100], accommodated by grain boundary sliding (gbs). This grain size-sensitive creep regime is characterized by a stress exponent ofn=3.4±0.2 and a grain size exponent of p=2.0±0.2. The activation volume for this gbs-accommodated dislocation creep regime is V*=(26±3)×10−6 m2·mol−1. Comparison of our flow law for gbs-accommodated dislocation creep with those for diffusion creep and for dislocation creep reveals that the present flow law is important for the flow of mantle rocks with grain sizes of < 100 μm at differential stresses > 20 MPa. Hence, gbs-accommodated dislocation creep is likely to be an important deformation mechanism in deep-rooted, highly localized shear zones in the lithospheric upper mantle.

     

  • loading
  • Behrmann, J. H., 1985. Crystal Plasticity and Superplasticity in Quartzite: A Natural Example. Tectonophys. , 115(1–2): 101–129
    Boullier, A. M., Gueguen, Y., 1975. SP-Mylonites: Origin of Some Mylonites by Superplastic Flow. Contrib. Mineral. Petrol. , 50: 93–104 doi: 10.1007/BF00373329
    Castelnau, O., Blackman, D. K., Lebensohn, R. A., et al., 2008. Micromechanical Modeling of the Viscoplastic Behavior of Olivine. J. Geophys. Res. , 113(B9), doi: 10.1029/2007JB005444
    Chopra, P. N., Paterson, M. S., 1981. The Experimental Deformation of Dunite. Tectonophys. , 78(1–4): 453–473
    Chopra, P. N., Paterson, M. S., 1984. The Role of Water in the Deformation of Dunite. J. Geophys. Res. , 89(B9): 7861–7876 doi: 10.1029/JB089iB09p07861
    Drury, M. R., 2005. Dynamic Recrystallization and Strain Softening of Olivine Aggregates in the Laboratory and the Lithosphere. Geo. Soc. Spec. Publ. , 243: 143–158 doi: 10.1144/GSL.SP.2005.243.01.11
    Etheridge, M. A., Wilkie, J. C., 1979. Grain Size Reduction, Grain Boundary Sliding and the Flow Strength of Mylonites. Tectonophys. , 58(1–2): 159–178
    Faul, U. H., Scott, D., 2006. Grain Growth in Partially Molten Olivine Aggregates. Contrib. Mineral. Petrol. , 151(1): 101–111 doi: 10.1007/s00410-005-0048-1
    Fliervoet, T. F., White, S. H., Drury, M. R., 1997. Evidence for Dominant Grain-Boundary Sliding Deformation in Greenschistand Amphibolite-Grade Polymineralic Ultramylonites from the Redbank Deformed Zone, Central Australia. J. Struct. Geol. , 19(12): 1495–1520 doi: 10.1016/S0191-8141(97)00076-X
    Gifkins, R. C., 1970. Optical Microscopy of Metals. Elsevier Sci., New York
    Gifkins, R. C., 1976. Grain-Boundary Sliding and Its Accommodation during Creep and Superplasticity. Met. Trans. , 7A: 1225–1232
    Gilotti, J. A., Hull, J. M., 1990. Phenomenological Superplasticity in Rocks. In: Knipe, R. J., Rutter, E. H., eds., Deformation Mechanisms, Rheology and Tectonics. Geo. Soc. Spec. Publ., 54: 229–240
    Goldsby, D. L., 2006. Superplastic Flow of Ice Relevant to Glacier and Ice-Sheet Mechanics. In: Knight, P., ed., Glacier Science and Environmental Change. Blackwell Publishing, Oxford. 308–314
    Goldsby, D. L., Kohlstedt, D. L., 2001. Superplastic Deformation of Ice: Experimental Observations. J. Geophys. Res. , 106(B6): 11017–11030 doi: 10.1029/2000JB900336
    Green, H. W., Borch, R. S., 1987. The Pressure Dependence of Creep. Acta Metal. , 35(6): 1301–1305 doi: 10.1016/0001-6160(87)90011-3
    Hirth, G., Kohlstedt, D. L., 1995b. Experimental Constraints on the Dynamics of the Partially Molten Upper Mantle 2: Deformation in the Dislocation Creep Regime. J. Geophys. Res. , 100(B8): 15441–15449 doi: 10.1029/95JB01292
    Hirth, G., Kohlstedt, D. L., 1996. Water in the Oceanic Upper Mantle: Implications for Rheology, Melt Extraction and Evolution of the Lithosphere. Earth and Planetary Science Letters, 144(1–2): 93–108
    Hirth, G., Kohlstedt, D. L., 2003. Rheology of the Upper Mantle and Mantle Wedge: A View from the Experimentalists. In: Eiler, J., ed., Inside the Subduction Factory. Geophysical Monograph, 138: 83–105
    Hustoft, J. W., Kohlstedt, D. L., 2006. Metal-Silicate Segregation in Deforming Dunitic Rocks. Geochem. Geophys. Geosyst. , 7: Q02001. doi: 10.1029/2005GC001048
    Jin, D. G., Karato, S. I., Obata, M., 1998. Mechanisms of Shear Localization in the Continental Lithosphere: Inference from the Deformation Microstructures of Peridotites from the Ivrea Zone, Northwestern Italy. J. Struct. Geol. , 20(2–3): 195–209
    Karato, S. I., 1987. Scanning Electron Microscope Observation of Dislocations in Olivine. Phys. Chem. Mineral. , 14(3): 245–248 doi: 10.1007/BF00307989
    Karato, S. I., 1989. Grain Growth Kinetics in Olivine Aggregates. Tectonophys. , 168(4): 255–273 doi: 10.1016/0040-1951(89)90221-7
    Karato, S. I., Jung, H., 2003. Effects of Pressure on High-Temperature Dislocation Creep of Olivine. Phil. Mag. , 83(3): 401–414 doi: 10.1080/0141861021000025829
    Karato, S. I., Paterson, M. S., Fitz-Gerald, J. D., 1986. Rheology of Synthetic Olivine Aggregates: Influence of Grain Size and Water. J. Geophys. Res. , 91(B8): 8151–8176 doi: 10.1029/JB091iB08p08151
    Karato, S. I., Rubie, D. C., 1997. Toward an Experimental Study of Deep Mantle Rheology: A New Multianvil Sample Assembly for Deformation Studies under High Pressures and Temperatures. J. Geophys. Res. , 102(B9): 20111–20122 doi: 10.1029/97JB01732
    Kohlstedt, D. L., Goetze, C., Durham, W. B., et al., 1976. New Technique for Decorating Dislocations in Olivine. Science, 191(4231): 1045–1046 doi: 10.1126/science.191.4231.1045
    Langdon, T. G., 1970. Grain Boundary Sliding as a Deformation Mechanism during Creep. Phil. Mag. , 22: 689–700 doi: 10.1080/14786437008220939
    Langdon, T. G., 1994. A United Approach to Grain Boundary Sliding in Creep and Superplasticity. Acta Metall. Mater. , 42(7): 2437–2443 doi: 10.1016/0956-7151(94)90322-0
    Marchant, D. D., Gordon, R. S., 1971. Grain Size Distribution and Grain Growth in MgO and MgO-Fe2O3 Solid Solutions. J. Am. Ceram. Soc. , 55: 19–24
    Mei, S. H., Kohlstedt, D. L., 2000a. Influence of Water on Plastic Deformation of Olivine Aggregates, 1, Diffusion Creep Regime. J. Geophys. Res. , 105(B9): 21457–21469 doi: 10.1029/2000JB900179
    Mei, S. H., Kohlstedt, D. L., 2000b. Influence of Water on Plastic Deformation of Olivine Aggregates, 2, Dislocation Creep Regime. J. Geophys. Res. , 105(B9): 21471–21481 doi: 10.1029/2000JB900180
    Mukherjee, A. K., 1971. The Rate Controlling Deformation Mechanism in Superplasticity. Mater. Sci. Eng. , 8: 83–89 doi: 10.1016/0025-5416(71)90085-1
    Paterson, M. S., 1990. Rock Deformation Experimentation. In: Duba, A. G., Durham, W. B., Handin, J. W., et al., eds., The Brittle-Ductile Transition in Rocks. Geophysical Monograph, 56: 187–194
    Precigout, J., Gueydan, F., Gapais, D., et al., 2007. Strain Localisation in the Subcontinental Mantle—A Ductile Alternative to the Brittle Mantle. Tectonophys. , 445(3–4): 318–336
    Raj, R., Ashby, M. F., 1971. On Grain Boundary Sliding and Diffusional Creep. Trans. Met. Soc. AI.M.E. , 2: 1113–1127
    Rutter, E. H., Casey, M., Burlini, L., 1994. Preferred Crystallographic Orientation Development during the Plastic and Superplastic Flow of Calcite Rocks. J. Struct. Geol. , 16(10): 1431–1446 doi: 10.1016/0191-8141(94)90007-8
    Schmid, S. M., Boland, J. N., Paterson, M. S., 1977. Superplastic Flow in Fine-Grained Limestone. Tectonophys. , 43(3—4): 257–291
    Schmid, S. M., Panozzo, R., Bauer, S., 1987. Simple Shear Experiments on Calcite Rocks: Rheology and Microfabric. J. Struct. Geol. , 9(5–6): 747–778
    van der Wal, D., Chopra, P., Drury, M., et al., 1993. Relationships between Dynamically Recrystallized Grain Size and Deformation Conditions in Experimentally Deformed Olivine Rocks. Geophys. Res. Lett. , 20(14): 1479–1482 doi: 10.1029/93GL01382
    von Mises, R., 1928. Mechanik der Plastischen Formänderung von Kristallen. Z. Angew. Math. Mech. , 8: 161–185 doi: 10.1002/zamm.19280080302
    Warren, J. M., Hirth, G., 2006. Grain Size Sensitive Deformation Mechanisms in Naturally Deformed Peridotites. Earth and Planetary Science Letters, 248(1–2): 438–450
    Wu, T., Kohlstedt, D. L., 1988. Rutherford Backscattering Spectroscopy Study of Kinetics of Oxidation of (Mg, Fe)2SiO4. J. Am. Ceram. Soc. , 71(7): 540–545 doi: 10.1111/j.1151-2916.1988.tb05917.x
    Zeuch, D. H., 1984. Application of a Model for Grain Boundary Sliding to High Temperature Flow of Carrara Marble. Mechanics of Materials, 3: 111–117 doi: 10.1016/0167-6636(84)90002-4
    Zimmerman, M. E., Kohlstedt, D. L., 2004. Rheological Properties of Partially Molten Lherzolite. J. Petrol. , 45(2): 275–298 doi: 10.1093/petrology/egg089
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views(861) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return