Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 21 Issue 5
Oct 2010
Turn off MathJax
Article Contents
Yuping Yang, Lifei Zhang. Changes in the Hydrogen-Bonded Structure of Lawsonite: An Experimental Study to 2.5 GPa and 400 ℃. Journal of Earth Science, 2010, 21(5): 811-816. doi: 10.1007/s12583-010-0114-0
Citation: Yuping Yang, Lifei Zhang. Changes in the Hydrogen-Bonded Structure of Lawsonite: An Experimental Study to 2.5 GPa and 400 ℃. Journal of Earth Science, 2010, 21(5): 811-816. doi: 10.1007/s12583-010-0114-0

Changes in the Hydrogen-Bonded Structure of Lawsonite: An Experimental Study to 2.5 GPa and 400 ℃

doi: 10.1007/s12583-010-0114-0
Funds:

the National Basic Research Program of China 2009CB825007

the National Natural Science Foundation of China 40730314

the National Natural Science Foundation of China 40821002

More Information
  • Corresponding author: Zhang Lifei, lfzhang@pku.edu.cn
  • Received Date: 04 Apr 2010
  • Accepted Date: 20 May 2010
  • Publish Date: 01 Oct 2010
  • In-situ Raman spectroscopic measurements of lawsonite in the OH and H2O stretching region were conducted up to approximately 2.5 GPa and 400 ℃ with a hydrothermal diamondanvil cell. In the experimental design at room temperature, the ratio of band-area and the width at half maximum of the decomposed Raman band shows discontinuities at 0.8 GPa, and correspondingly, the 695-cm-1 peak in the low-wavenumber region was split into two peaks. In the experiments at high temperature, the splitting of the 695-cm-1 peak was induced at 2.4 GPa and 250 ℃. These findings demonstrate the existence of discontinuities in the pressure response of the strength of the hydrogen bonds, which suggests a possible change of the hydrogen-bonded structure in lawsonite under these conditions.

     

  • loading
  • Bassett, W. A., Shen, A. H., Bucknum, M., et al., 1993. A New Diamond-Anvil Cell for Hydrothermal Studies to 2.5 GPa and from −190 ℃ to 1 200 ℃. Review of Scientific Instruments, 64(8): 2340–2345 doi: 10.1063/1.1143931
    Baur, W. H., 1978. Crystal Structure Refinement of Lawsonite. American Mineralogist, 63: 311–315 https://www.mendeley.com/catalogue/746f44e5-bd09-3359-909a-feb656c32bb5/
    Comodi, P., Zanazzi, P. F., 1996. Effects of Temperature and Pressure on the Structure of Lawsonite. American Mineralogist, 81: 833–841 doi: 10.2138/am-1996-7-805
    Daniel, I., Fiquet, G., Gillet, P., et al., 2000. High-Pressure Behaviour of Lawsonite: A Phase Transition at 8.6 GPa. European Journal of Mineralogy, 12: 721–733 doi: 10.1127/0935-1221/2000/0012-0721
    Kolesov, B. A., Lager, G. A., Schultz, A. J., 2008. Behaviour of H2O and OH in Lawsonite: A Single-Crystal Neutron Diffraction and Raman Spectroscopic Investigation. European Journal of Mineralogy, 20: 63–72 doi: 10.1127/0935-1221/2008/0020-1781
    Labotka, T. C., Rossman, G. R., 1974. The Infrared Pleochroism of Lawsonite: The Orientation of the Water and Hydroxide Groups. American Mineralogist, 59(7–8): 799–806 http://www.minsocam.org/ammin/AM59/AM59_799.pdf
    Le-Cleac'h, A., Gillet, P., 1990. IR and Raman Spectroscopic Study of Natural Lawsonite. European Journal of Mineralogy, 2: 43–53 doi: 10.1127/ejm/2/1/0043
    Libowitzky, E., Armbruster, T., 1995. Low-Temperature Phase Transitions and the Role of Hydrogen Bonds in Lawsonite. American Mineralogist, 80: 1277–1285 doi: 10.2138/am-1995-11-1217
    Libowitzky, E., Rossman, G. R., 1996. FTIR Spectroscopy of Lawsonite between 82 and 325 K. American Mineralogist, 81: 1080–1091 doi: 10.2138/am-1996-9-1004
    Meyer, H. W., Marion, S., Sondergeld, P., et al., 2001. Displacive Components of the Low-Temperature Phase Transitions in Lawsonite. American Mineralogist, 86: 566–577 doi: 10.2138/am-2001-0419
    Poli, S., Schmidt, M. W., 2002. Petrology of Subducted Slabs. Annual Review of Earth Planetary Sciences, 30: 207–235 doi: 10.1146/annurev.earth.30.091201.140550
    Schmidt, C., Ziemann, M. A., 2000. In-Situ Raman Spectroscopy of Quartz: A Pressure Senor for Hydrothermal Diamond-Anvil Cell Experiments at Elevated Temperatures. American Mineralogist, 85(11–12): 1725–1734 doi: 10.2138/am-2000-11-1216/html
    Scott, H. P., Williams, Q., 1999. An Infrared Spectroscopic Study of Lawsonite to 20 GPa. Physics and Chemistry of Minerals, 26(6): 437–445 doi: 10.1007/s002690050206
    Scott, H. P., Liu, Z. X., Hemley, R. J., et al., 2007. High-Pressure Infrared Spectra of Talc and Lawsonite. American Mineralogist, 92: 1814–1820 doi: 10.2138/am.2007.2430
    Song, S. G., Su, L., Niu, Y. L., et al., 2009. Two Types of Peridotite in North Qaidam UHPM Belt and Their Tectonic Implications for Oceanic and Continental Subduction: A Review. Journal of Asian Earth Sciences, 35(3–4): 285–297 https://www.sciencedirect.com/science/article/abs/pii/S1367912008001843#:~:text=Two%20types%20of%20peridotites%20are%20recognized%20in%20the,most%20informative%20lithologies%20in%20a%20continental-type%20subduction%20zone.
    Zack, T., Rivers, T., Brumm, R., et al., 2004. Cold Subduction of Oceanic Crust: Implications from a Lawsonite Eclogite from the Dominican Republic. European Journal of Mineralogy, 16: 909–916 doi: 10.1127/0935-1221/2004/0016-0909
    Zhang, L. F., Wang, Q. J., Song, S. G., 2009. Lawsonite Blueschist in Northern Qilian, NW China: P-T Pseudosections and Petrologic Implications. Journal of Asian Earth Sciences, 35(3–4): 354–366 https://www.sciencedirect.com/science/article/abs/pii/S1367912008001855
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(609) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return