Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 21 Issue 5
Oct 2010
Turn off MathJax
Article Contents
Haemyeong Jung, Munjae Park, Sejin Jung, Jaeseok Lee. Lattice Preferred Orientation, Water Content, and Seismic Anisotropy of Orthopyroxene. Journal of Earth Science, 2010, 21(5): 555-568. doi: 10.1007/s12583-010-0118-9
Citation: Haemyeong Jung, Munjae Park, Sejin Jung, Jaeseok Lee. Lattice Preferred Orientation, Water Content, and Seismic Anisotropy of Orthopyroxene. Journal of Earth Science, 2010, 21(5): 555-568. doi: 10.1007/s12583-010-0118-9

Lattice Preferred Orientation, Water Content, and Seismic Anisotropy of Orthopyroxene

doi: 10.1007/s12583-010-0118-9
Funds:

the Korea Meteorological Administration Research and Development Program CATER 2008-5112

More Information
  • Corresponding author: Jung Haemyeong, hjung@snu.ac.kr
  • Received Date: 12 Mar 2010
  • Accepted Date: 21 May 2010
  • Publish Date: 01 Oct 2010
  • Lattice preferred orientation (LPO) and seismic anisotropy of orthopyroxene (enstatite) in mantle xenoliths from Spitsbergen, Svalbard, near the Arctic, are studied. LPOs of enstatite were determined using electron backscattered diffraction (EBSD). We found four types of LPOs of orthopyroxene and defined them as type-AC, -AB, -BC, and -ABC. Type-AC LPO of orthopyroxene is defined as (100) plane aligned subparallel to foliation and [001] axis aligned subparallel to lineation. Type-AB LPO is defined as (100) plane aligned subparallel to foliation and [010] axis aligned subparallel to lineation. Type-BC LPO is defined as (010) plane aligned subparallel to foliation and [001] axis aligned subparallel to lineation. Type-ABC LPO is defined as both (100) and (010) planes aligned subparallel to foliation with a girdle distribution of both [100] and [010] axes normal to lineation and [001] axis aligned subparallel to lineation. We report for the first time the type-AB, -BC, and -ABC LPO of orthopyroxene. We found that the LPO pattern has a correlation with the content of orthopyroxene in the specimen. Nicolet 6700 FTIR (Fourier transformation infrared) study of enstatite showed that type-AC LPO was observed mostly in the samples of enstatite with low water content. It is found that the strength of the LPO of enstatite decreases with increasing water content and has a correlation with the strength of the LPO of olivine: the stronger the LPO of enstatite, the stronger the LPO of olivine. Seismic anisotropy of enstatite was smaller than that of olivine in the same specimen.

     

  • loading
  • Amundsen, H. E. F., Griffin, W. L., O'Reilly, S. Y., 1987. The Lower Crust and Upper Mantle beneath Northwestern Spitsbergen: Evidence from Xenoliths and Geophysics. Tectonophysics, 139(3–4): 169–185
    Bell, D. R., Ihinger, P. D., Rossman, G. R., 1995. Quantitative Analysis of Trace OH in Garnet and Pyroxenes. American Mineralogist, 80(5–6): 465–474
    Ben-Ismail, W., Mainprice, D., 1998. An Olivine Fabric Database: An Overview of Upper Mantle Fabrics and Seismic Anisotropy. Tectonophysics, 296(1–2): 145–157
    Brey, G. P., Köhler, T., 1990. Geothermobarometry in Four-Phase Lherzolites: II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers. Journal of Petrology, 31(6): 1353–1378
    Bystricky, M., Kunze, K., Burlini, L., et al., 2000. High Shear Strain of Olivine Aggregates: Rheological and Seismic Consequences. Science, 290(5496): 1564–1567 doi: 10.1126/science.290.5496.1564
    Carter, N. L., Avé-Lallemant, H. G., 1970. High Temperature Flow of Dunite and Peridotite. Geological Society of America Bulletin, 81(8): 2181–2202 doi: 10.1130/0016-7606(1970)81[2181:HTFODA]2.0.CO;2
    Chai, M., Brown, J. M., Slutsky, L. J., 1997. The Elastic Constants of an Aluminous Orthopyroxene to 12.5 GPa. Journal of Geophysical Research—Solid Earth, 102(B7): 14779–14785 doi: 10.1029/97JB00893
    Christensen, N. I., Lundquist, S. M., 1982. Pyroxene Orientation within the Upper Mantle. Geological Society of America Bulletin, 93(4): 279–288 doi: 10.1130/0016-7606(1982)93<279:POWTUM>2.0.CO;2
    Dingley, D. J., 1984. Diffraction from Sub-micron Areas Using Electron Backscattering in a Scanning Electron Microscope. Scanning Electron Microscopy, 2: 569–575
    Grant, K., Ingrin, J., Lorand, J. P., et al., 2007a. Water Partitioning between Mantle Minerals from Peridotite Xenoliths. Contributions to Mineralogy and Petrology, 154(1): 15–34 doi: 10.1007/s00410-006-0177-1
    Grant, K. J., Kohn, S. C., Brooker, R. A., 2007b. The Partitioning of Water between Olivine, Orthopyroxene and Melt Synthesised in the System Albite-Forsterite-H2O. Earth and Planetary Science Letters, 260(1–2): 227–241
    Green, H. W., Radcliffe, S. V., 1972. Deformation Processes in the Upper Mantle. Geophysical Monograph, 16: 139–156
    Hidas, K., Falus, G., Szabo, C., et al., 2007. Geodynamic Implications of Flattened Tabular Equigranular Textured Peridotites from the Bakony-Balaton Highland Volcanic Field (Western Hungary). Journal of Geodynamics, 43(4–5): 484–503
    Ionov, D. A., Bodinier, J. L., Mukasa, S. B., et al., 2002. Mechanisms and Sources of Mantle Metasomatism: Major and Trace Element Compositions of Peridotite Xenoliths from Spitsbergen in the Context of Numerical Modelling. Journal of Petrology, 43(12): 2219–2259 doi: 10.1093/petrology/43.12.2219
    Ishii, K., Sawaguchi, T., 2002. Lattice- and Shape-Preferred Orientation of Orthopyroxene Porphyroclasts in Peridotites: An Application of Two-Dimensional Numerical Modeling. Journal of Structural Geology, 24(3): 517–530 doi: 10.1016/S0191-8141(01)00078-5
    Jahn, S., Martonak, R., 2008. Plastic Deformation of Orthoenstatite and the Ortho- to High-Pressure Clinoenstatite Transition: A Metadynamics Simulation Study. Physics and Chemistry of Minerals, 35(1): 17–23 doi: 10.1007/s00269-007-0194-2
    Jung, H., 2009. Deformation Fabrics of Olivine in Val Malenco Peridotite Found in Italy and Implications for the Seismic Anisotropy in the Upper Mantle. Lithos, 109(3–4): 341–349
    Jung, H., Karato, S. I., 2001. Water-Induced Fabric Transitions in Olivine. Science, 293(5534): 1460–1463 doi: 10.1126/science.1062235
    Jung, H., Katayama, I., Jiang, Z., et al., 2006. Effect of Water and Stress on the Lattice-Preferred Orientation of Olivine. Tectonophysics, 421(1–2): 1–22
    Jung, H., Mo, W., Choi, S. H., 2009a. Deformation Microstructures of Olivine in Peridotite from Spitsbergen, Svalbard and Implications for Seismic Anisotropy. Journal of Metamorphic Geology, 27(9): 707–720 doi: 10.1111/j.1525-1314.2009.00838.x
    Jung, H., Mo, W., Green, H. W., 2009b. Upper Mantle Seismic Anisotropy Resulting from Pressure-Induced Slip Transition in Olivine. Nature Geoscience, 2(1): 73–77 doi: 10.1038/ngeo389
    Kamei, A., Obata, M., Michibayashi, K., et al., 2010. Two Contrasting Fabric Patterns of Olivine Observed in Garnet and Spinel Peridotite from a Mantle-Derived Ultramafic Mass Enclosed in Felsic Granulite, the Moldanubian Zone, Czech Republic. Journal of Petrology, 51(1–2): 101–123
    Katayama, I., Jung, H., Karato, S. I., 2004. New Type of Olivine Fabric from Deformation Experiments at Modest Water Content and Low Stress. Geology, 32(12): 1045–1048 doi: 10.1130/G20805.1
    Katayama, I., Karato, S. I., 2006. Effect of Temperature on the B- to C-Type Olivine Fabric Transition and Implication for Flow Pattern in Subduction Zones. Physics of the Earth and Planetary Interiors, 157(1–2): 33–45
    Katayama, I., Karato, S. I., Brandon, M., 2005. Evidence of High Water Content in the Deep Upper Mantle Inferred from Deformation Microstructures. Geology, 33(7): 613–616 doi: 10.1130/G21332.1
    Kohlstedt, D. L., Vander-Sande, J. B., 1973. Transmission Electron Microscopy Investigation of Defect Microstructure of Four Natural Orthopyroxenes. Contributions to Mineralogy and Petrology, 42(2): 169–180 doi: 10.1007/BF00371506
    Lloyd, G. E., 1987. Atomic Number and Crystallographic Contrast Images with the SEM: A Review of Backscattered Electron Techniques. Mineralogical Magazine, 51(359): 3–19 doi: 10.1180/minmag.1987.051.359.02
    Mainprice, D., 1990. A Fortran Program to Calculate Seismic Anisotropy from the Lattice Preferred Orientation of Minerals. Computers & Geosciences, 16(3): 385–393
    Mainprice, D., Barruol, G., Ismail, W. B., 2000. The Seismic Anisotropy of the Earth's Mantle from Single Crystal to Polycrystal. Geophysical Monograph, 117: 237–264
    Mercier, J. C., Nicolas, A., 1975. Textures and Fabrics of Upper-Mantle Peridotites as Illustrated by Xenoliths from Basalts. Journal of Petrology, 16(2): 454–487 doi: 10.1093/petrology/16.2.454
    Michibayashi, K., Ina, T., Kanagawa, K., 2006. The Effect of Dynamic Recrystallization on Olivine Fabric and Seismic Anisotropy: Insight from a Ductile Shear Zone, Oman Ophiolite. Earth and Planetary Science Letters, 244(3–4): 695–708
    Michibayashi, K., Oohara, T., Satsukawa, T., et al., 2009. Rock Seismic Anisotropy of the Low-Velocity Zone beneath the Volcanic Front in the Mantle Wedge. Geophysical Research Letters, 36
    Mizukami, T., Wallis, S. R., Yamamoto, J., 2004. Natural Examples of Olivine Lattice Preferred Orientation Patterns with a Flow Normal a-Axis Maximum. Nature, 427(6973): 432–436 doi: 10.1038/nature02179
    Nicolas, A., Christensen, N. I., 1987. Formation of Anisotropy in Upper Mantle Peridotite: A Review. In: Fuchs, K., Froidevaux, C., eds., Composition, Structure and Dynamics of the Lithosphere-Asthenosphere System. Geodyn. AGU, Washington D.C. . 111–123
    Panozzo, R. H., 1984. Two-Dimensional Strain from the Orientation of Lines in a Plan. Journal of Structural Geology, 6(1–2): 215–221
    Paterson, M. S., 1982. The Determination of Hydroxyl by Infrared Absorption in Quartz, Silicate Glasses and Similar Materials. Bull. Mineral. , 105(1): 20–29
    Peslier, A. H., Luhr, J. F., Post, J., 2002. Low Water Contents in Pyroxenes from Spinel-Peridotites of the Oxidized, Sub-arc Mantle Wedge. Earth and Planetary Science Letters, 201(1): 69–86 doi: 10.1016/S0012-821X(02)00663-5
    Prior, D. J., Boyle, A. P., Brenker, F., et al., 1999. The Application of Electron Backscatter Diffraction and Orientation Contrast Imaging in the SEM to Textural Problems in Rocks. American Mineralogist, 84(11–12): 1741–1759
    Raleigh, C. B., 1965. Glide Mechanism in Experimentally Deformed Minerals. Science, 150(3697): 339–341
    Raleigh, C. B., Kirby, S. H., Carter, N. L., et al., 1971. Slip and the Clinoenstatite Transformation as Competing Rate Processes in Enstatite. Journal of Geophysical Research, 76(17): 4011–4022 doi: 10.1029/JB076i017p04011
    Ringwood, A. E., 1970. Phase Transformations and the Constitution of the Mantle. Physics of the Earth and Planetary Interiors, 3: 109–155 doi: 10.1016/0031-9201(70)90047-6
    Ross, J. V., Nielsen, K. C., 1978. High-Temperature Flow of Wet Polycrystalline Enstatite. Tectonophysics, 44(1–4): 233–261
    Sawaguchi, T., 2004. Deformation History and Exhumation Process of the Horoman Peridotite Complex, Hokkaido, Japan. Tectonophysics, 379(1–4): 109–126
    Skemer, P., Katayama, I., Jiang, Z. T., et al., 2005. The Misorientation Index: Development of a New Method for Calculating the Strength of Lattice-Preferred Orientation. Tectonophysics, 411(1–4): 157–167
    Skemer, P., Katayama, I., Karato, S. I., 2006. Deformation Fabrics of the Cima di Gagnone Peridotite Massif, Central Alps, Switzerland: Evidence of Deformation at Low Temperatures in the Presence of Water. Contributions to Mineralogy and Petrology, 152(1): 43–51 doi: 10.1007/s00410-006-0093-4
    Skemer, P., Warren, J. M., Kelemen, P. B., et al., 2010. Microstructural and Rheological Evolution of a Mantle Shear Zone. Journal of Petrology, 51(1–2): 43–53
    Skogby, H., Bell, D. R., Rossman, G. R., 1990. Hydroxide in Pyroxene-Variations in the Natural Environment. American Mineralogist, 75(7–8): 764–774
    Soustelle, V., Tommasi, A., Demouchy, S., et al., 2009. Deformation and Fluid-Rock Interaction in the Supra-Subduction Mantle: Microstructures and Water Contents in Peridotite Xenoliths from the Avacha Volcano, Kamchatka. Journal of Petrology, 51(1–2): 363–394
    Tommasi, A., Vauchez, A., Ionov, D. A., 2008. Deformation, Static Recrystallization, and Reactive Melt Transport in Shallow Subcontinental Mantle Xenoliths (Tok Cenozoic Volcanic Field, SE Siberia). Earth and Planetary Science Letters, 272(1–2): 65–77
    Vanduysen, J. C., Doukhan, N., Doukhan, J. C., 1985. Transmission Electron Microscope Study of Dislocations in Ortho-Pyroxene (Mg, Fe)2Si2O6. Physics and Chemistry of Minerals, 12(1): 39–44 doi: 10.1007/BF00348745
    Vauchez, A., Dineur, F., Rudnick, R., 2005. Microstructure, Texture and Seismic Anisotropy of the Lithospheric Mantle above a Mantle Plume: Insights from the Labait Volcano Xenoliths (Tanzania). Earth and Planetary Science Letters, 232(3–4): 295–314
    Vauchez, A., Garrido, C. J., 2001. Seismic Properties of an Asthenospherized Lithospheric Mantle: Constraints from Lattice Preferred Orientations in Peridotite from the Ronda Massif. Earth and Planetary Science Letters, 192(2): 235–249 doi: 10.1016/S0012-821X(01)00448-4
    Xu, Z. Q., Wang, Q., Ji, S. C., et al., 2006. Petrofabrics and Seismic Properties of Garnet Peridotite from the UHP Sulu Terrane (China): Implications for Olivine Deformation Mechanism in a Cold and Dry Subducting Continental Slab. Tectonophysics, 421(1–2): 111–127
    Zhang, S. Q., Karato, S. I., 1995. Lattice Preferred Orientation of Olivine Aggregates Deformed in Simple Shear. Nature, 375(6534): 774–777 doi: 10.1038/375774a0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views(976) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return