Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 21 Issue 5
Oct 2010
Turn off MathJax
Article Contents
Timothy M Kusky, Jianghai Li. Origin and Emplacement of Archean Ophiolites of the Central Orogenic Belt, North China Craton. Journal of Earth Science, 2010, 21(5): 744-781. doi: 10.1007/s12583-010-0119-8
Citation: Timothy M Kusky, Jianghai Li. Origin and Emplacement of Archean Ophiolites of the Central Orogenic Belt, North China Craton. Journal of Earth Science, 2010, 21(5): 744-781. doi: 10.1007/s12583-010-0119-8

Origin and Emplacement of Archean Ophiolites of the Central Orogenic Belt, North China Craton

doi: 10.1007/s12583-010-0119-8
Funds:

the US National Science Foundation 02-07886

the US National Science Foundation 01-25925

the National Natural Science Foundation of China 49832030

the National Natural Science Foundation of China 40821061

the Peking University Project 985

the Ministry of Education of China B07039

More Information
  • Corresponding author: Timothy M Kusky, tkusky@gmail.com
  • Received Date: 04 Apr 2010
  • Accepted Date: 20 May 2010
  • Publish Date: 01 Oct 2010
  • Understanding Archean crustal and mantle evolution hinges upon identification and characterization of oceanic lithosphere. We report and update here more than 10 years work on a complete, yet dismembered and metamorphosed Archean ophiolite sequence in the North China craton, in the Dongwanzi (东湾子)-Zunhua (遵化) structural belt and correlatives in the Wutaishan (五台山) area. Banded iron formation structurally overlies several tens of meters of variably deformed pillow lavas, mafic flows, and picritic amphibolites. These are in structural contact with a 2 km thick mixed gabbro and dike complex with gabbro screens, exposed discontinuously along strike for more than 20 km. The dikes consist of metamorphosed diabase, basalt, Hb-Cpx-gabbro, and pyroxenite. The dike/gabbro complex is underlain by several kilometers of mixed isotropic and foliated gabbro, which preserve compositional layering approximately 2 km below the dike complex, and then over several hundred meters merge into strongly compositionally layered gabbro and olivine-gabbro. The layered gabbro becomes mixed with layered pyroxenite/gabbro marking a transition zone into cumulate ultramafic rocks including serpentinized dunite, pyroxenite and wehrlite, and finally into strongly deformed and serpentinized olivine and orthopyroxene-bearing ultramafic rocks interpreted as depleted mantle harzburgite tectonites. A U/Pb zircon age of 2.505 Ga from gabbro of the Dongwanzi ophiolite makes it one of the world's oldest recognized, laterally-extensive complete ophiolite sequences, though older dismembered ophiolites are recognized in South Africa and Greenland, extending back to 3.8 Ga. This age is confirmed by a ca. 2.6 Ga Re-Os isochron from chromites from the belt, and a number of dated 2.5–2.4 Ga cross-cutting younger igneous units. The Dongwanzi ophiolite is one of the largest well-preserved greenstone belts in the central orogenic belt that divides the North China craton into eastern and western blocks. More than 1 000 other fragments of gabbro, pillow lava, sheeted dikes, harzburgite, and podiform-chromite bearing dunite occur as tectonic blocks (tens to hundreds of meters long) in a biotite-gneiss and BIF matrix, intruded by tonalite and granodiorite, in the Zunhua structural belt. Blocks in this metamorphosed Archean ophiolitic mélange preserve deeper levels of oceanic mantle than the Dongwanzi ophiolite. The ophiolite-related mélange marks a suture zone across the North China craton, traced for more than 1 600 km along the central orogenic belt. Many of the chromitite bodies are localized in dunite envelopes within harzburgite tectonite, and have characteristic nodular and orbicular chromite textures, known elsewhere only from ophiolites. The chromites have variable but high chrome numbers (Cr/(Cr+Al)=0.74−0.93) and elevated P, also characteristic of suprasubduction zone ophiolites. The high chrome numbers, coupled with TiO2 < 0.2 wt.% and V2O5 < 0.1 wt.% indicate high degrees of partial melting from a very depleted mantle source and primitive melt for the chromite. A Re-Os isochron from the chromites indicates an age of 2.6 Ga, showing that they are the same age as the Dongwanzi ophiolite. The range in initial Os isotopic compositions in the chromites in these ophiolitic blocks is small and well within the range seen in modern ophiolites. The ultramafic and ophiolitic blocks in the Zunhua mélange are therefore interpreted as dismembered and strongly deformed parts of the Dongwanzi ophiolite. We suggest the name "Dongwanzi-Zunhua ophiolite belt" for these rocks. Geochemical and structural features of the Dongwanzi ophiolite suggest that it formed in a forearc environment and was incorporated in an accretionary prism soon after it formed. Neoarchean and Paleoproterozoic (2.50 and 1.90 Ga) high-pressure granulites form a belt more than 700 km long along the western side of the central orogenic belt. Several Neoarchean sedimentary basins consisting of conglomerate, greywacke, and shale are located along the eastern side of the central orogenic belt, and are interpreted as remnants of a foreland basin. The three belts record the Neoarchean subduction and collision between an arc terrane and eastern blocks of the North China craton in the Neoarchean, and further deformation and metamorphism in the Paleoproterozoic related to collisions on the northern margin of the already amalgamated North China craton.

     

  • loading
  • Abbott, D. H., 1996. Plumes and Hotspots as Sources of Greenstone Belts. Lithos, 37(2–3): 113–127
    Ahmed, A. G., Arai, S., Attia, A. K., 2001. Petrological Characteristics of Podiform Chromitites and Associated Peridotites of the Pan African Proterozoic Ophiolite Complexes of Egypt. Mineralium Deposita, 36(1): 72–84 doi: 10.1007/s001260050287
    Anonymous, 1972. Penrose Field Conference on Ophiolites. Geotimes, 17(12): 24–25
    Arai, S., 1992. Chemistry of Chromian Spinel in Volcanic Rocks as a Potential Guide to Magma Chemistry. Mineralogical Magazine, 56(383): 173–184 doi: 10.1180/minmag.1992.056.383.04
    Arai, S., 1997a. Origin of Podiform Chromitites. Journal of Asian Earth Sciences, 15(2–3): 303–310
    Arai, S., 1997b. Control of Wall-Rock Composition on the Formation of Podiform Chromitites as a Result of Magma/Peridotite Interaction. Shigen Chishisu, 47(4): 177–187
    Arai, S., Yurimoto, H., 1995. Possible Sub-arc Origin of Podiform Chromitites. The Island Arc, 4(2): 104–111 doi: 10.1111/j.1440-1738.1995.tb00135.x
    Auge, T., 1987. Chromite Deposits in the Northern Oman Ophiolite: Mineralogical Constraints. Mineralium Deposita, 22(1): 1–10
    Bai, J., 1996. The Precambrian Crustal Evolution of China. Geological Publishing House, Beijing. 165 (in Chinese)
    Bai, J., Dai, F. Y., 1998. Archean Crust of China. In: Ma, X. Y., Bai, J., eds., Precambrian Crustal Evolution of China. Springer Geological Publishing House, Beijing. 15–86 (in Chinese)
    Bai, J., Wang, R. Z., Guo, J. J., 1992. The Major Geological Events of Early Precambrian and Their Dating in Wutaishan Region. Geological Publishing House, Beijing. 1–60 (in Chinese)
    Berhe, S. M., 1990. Ophiolites in North and East Africa: Implications for Proterozoic Crustal Growth. Journal of the Geological Society, 147: 41–57 doi: 10.1144/gsjgs.147.1.0041
    Bickle, M. J., Nisbet, E. G., Martin, A., 1994. Archean Greenstone Belts are not Oceanic Crust. Journal of Geology, 102(2): 121–137 doi: 10.1086/629658
    Canil, D., 1997. Vanadium Partitioning and the Oxidation State of Archean Komatiite Magmas. Nature, 389(6653): 842–845 doi: 10.1038/39860
    Canil, D., 1999. Vanadium Partitioning between Orthopyroxene, Spinel and Silicate Melt and the Redox States of Mantle Source Regions for Primary Magmas. Geochimica et Cosmochimica Acta, 63(34): 557–572
    Chadwick, B., Crewe, M. A., 1986. Chromite in the Early Archean Akilia Association (ca. 3 800 M.Y. ) Ivisartoq Region, Inner Godthabsfjord, Southern West Greenland. Economic Geology, 81: 184–191 doi: 10.2113/gsecongeo.81.1.184
    Cotterill, P., 1969. The Chromite Deposits of Selukwe, Rhodesia. Economic Geology Monograph, 4: 154–186
    Dann, J. C., 1997a. Pseudostratigraphy and Origin of the Early Proterozoic Payson Ophiolite, Central Arizona. Geological Society of America Bulletin, 109: 347–365 doi: 10.1130/0016-7606(1997)109<0347:PAOOTE>2.3.CO;2
    Dann, J. C., 1997b. Branching Sheeted Dikes and Seafloor Spreading within an Early Proterozoic Intra-arc Basin. Journal of Geophysical Research, 102(B11): 24917–24929 doi: 10.1029/97JB02161
    Davis, G. A., Qian, X. L., Zheng, Y. D., et al., 1996. Mesozoic Deformation and Plutonism in the Yunmeng Shan: A Metamorphic Core Complex North of Beijing, China. In: Yin, A., Harrison, T. M., eds., The Tectonic Evolution of Asia. Cambridge University Press, London. 253–280
    De-Wit, M. J., 2004. Archean Greenstone Belts do Contain Fragments of Ophiolites, In: Kusky, T. M., ed., Precambrian Ophiolites and Related Rocks. Developments in Precambrian Geology, 13: 599–614
    De-Wit, M. J., De-Ronde, C. E. J., Tredoux, M., et al., 1992. Formation of an Archean Continent. Nature, 357: 553–562 doi: 10.1038/357553a0
    De-Wit, M. J., Hart, R. A., Hart, R. J., 1987. The Jamestown Ophiolite Complex, Barberton Mountain Belt: A Section through 3.5 Ga Oceanic Crust. Journal of African Earth Sciences, 6(5): 681–730 doi: 10.1016/0899-5362(87)90007-8
    De-Wit, M. J., Hart, R. A., Martin, A., et al., 1982. Archean Abiogenic and Probable Biogenic Structures Associated with Mineralized Hydrothermal Vent Systems and Regional Metasomatism, with Implications for Greenstone Belt Studies. Economic Geology, 77: 1783–1802 doi: 10.2113/gsecongeo.77.8.1783
    Dick, H. J. B., Bullen, T., 1984. Chromian Spinel as a Petrogenetic Indicator in Abyssal and Alpine-Type Peridotites and Spatially Associated Lavas. Contributions to Mineralogy and Petrology, 86(1): 54–76 doi: 10.1007/BF00373711
    Dilek, Y., 2003. Ophiolite Concept and Its Evolution. In: Dilek, Y., Newcomb, S., eds., Ophiolite Concept and the Evolution of Geological Thought. Geological Society of America Special Paper, 373: 1–16
    Dilek, Y., Furnes, H., 2009. Structure and Geochemistry of Tethyan Ophiolites and Their Petrogenesis in Subduction Rollback Systems. Lithos, 11(1–2): 1–20
    Dilek, Y., Furnes, H., Shallo, M., 2007. Suprasubduction Zone Ophiolite Formation along the Periphery of Mesozoic Gondwana. Gondwana Research, 11(4): 453–475 doi: 10.1016/j.gr.2007.01.005
    Dilek, Y., Furnes, H., Shallo, M., 2008. Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ Evolution of a Marginal Basin Oceanic Crust. Lithos, 100(1–4): 174–209
    Dilek, Y., Moores, E., Elthon, D., et al., 2000, Ophiolites and Oceanic Crust. Geological Society of America Special Paper, 349: 552
    Dilek, Y., Polat, A., 2008. Suprasubduction Zone Ophiolites and Archean Tectonics. Geology, 36: 430–432
    Dilek, Y., Robinson, P. T., 2003. Ophiolites in Earth History: Introduction. Geological Society of London Special Publication, 218: 1–8 doi: 10.1144/GSL.SP.2003.218.01.01
    Dilek, Y., Thy, P., 2009. Island Arc Tholeiite to Boninitic Melt Evolution of the Cretaceous Kizildag (Turkey) Ophiolite: Model for Multi-stage Early Arc/Fore-arc Magmatism in Tethyan Subduction Factories. Lithos, 113(1–2): 68–87
    Echeverria, L. M., 1980. Tertiary or Mesozoic Komatiites from Gorgona Island, Colombia: Field Relations and Geochemistry. Contributions to Mineralogy and Petrology, 73(3): 253–266 doi: 10.1007/BF00381444
    Edwards, S. J., Pearce, J. A., Freeman, J., 2000. New Insights Concerning the Influence of Water during the Formation of Podiform Chromitite. In: Dilek, Y., Moores, E., Elthon, D., et al., eds., Ophiolites and Oceanic Crust, New Insights from Field Studies and the Ocean Drilling Program. Geological Society of America Special Paper, 349: 139–148
    Evans, B. W., Frost, B. R., 1975. Chrome-Spinels in Progressive Metamorphism—A Preliminary Analysis. Geochimicia et Cosmochimicia Acta, 39: 959–972 doi: 10.1016/0016-7037(75)90041-1
    Fang, L., Friend, C. R. L., Li, Q., et al., 1998. Geology of the Santunying Area of Eastern Hebei Province. Geological Publishing House, Beijing. 134 (in Chinese)
    Faure, M., Trap, P., Lin, W., et al., 2007. Polyorogenic Evolution of the Paleoproterozoic Trans-North China Belt—New Insights from the Lüliangshan-Hengshan-Wutaishan and Fuping Massifs. Episodes, 30(2): 96–107 doi: 10.18814/epiiugs/2007/v30i2/004
    Festa, A., Pini, G. A., Dilek, Y., et al., 2009. Peri-Adriatic Mélanges and Their Evolution in the Tethyan Realm. International Geology Review, 52(4–6): 369–403
    Festa, A., Pini, G. A., Dilek, Y., et al., 2010. Mélanges and Mélange-Forming Processes: A Historical Overview and New Concepts. International Geology Review, 52(10–12): 1040–1105
    Furnes, H., De-Wit, M. J., Staudigel, H., et al., 2007a. A Vestige of Earth's Oldest Ophiolite. Science, 315(5819): 1704–1707 doi: 10.1126/science.1139170
    Furnes, H., De-Wit, M. J., Staudigel, H., et al., 2007b. Response to Comments on "A Vestige of Earth's Oldest Ophiolite". Science, 318(5851), doi: 10.1126/science.1144231
    Furnes, H., Rosing, M., Dilek, Y., et al., 2009. Isua Supracrustal Belt (Greenland)—A Vestige of a 3.8 Ga Suprasubduction Zone Ophiolite, and the Implications for Archean Geology. Lithos, 113(1–2): 115–132
    Gao, S., Rudnick, R. L., Carlson, R. W., et al., 2002. Re-Os Evidence for Replacement of Ancient Mantle Lithosphere beneath the North China Craton. Earth and Planetary Science Letters, 198(3–4): 307–322
    Gao, S., Zhang, J. F., Xu, W. L., et al., 2009. Delamination and Destruction of the North China Craton. Chinese Science Bulletin, 54(14): 1962–1973 (in Chinese) doi: 10.1360/csb2009-54-14-1962
    Gass, I. G., Lippard, S. J., Shelton, A. W., 1984. Ophiolites and Oceanic Lithosphere. Blackwell Scientific, The Geological Society Special Publication, Oxford. 13, 413
    Gornostayev, S. S., Walker, R. J., Hanski, E. J., et al., 2004. Evidence for the Emplacement of ca. 3.0 Ga Mantle-Derived Mafic-Ultramafic Bodies in the Ukrainian Shield. Precambrian Res. , 132: 349–362 doi: 10.1016/j.precamres.2004.03.004
    Griffin, W. L., Zhang, A., O'Reilly, S. Y., et al., 1998. Phanerozoic Evolution of the Lithosphere beneath the Sino-Korean Craton. In: Conference on Mantle Dynamics and Plate Interactions in East Asia. A.G.U. Geodynamics, 27: 107–126
    Guan, H., Sun, M., Wilde, S. A., et al., 2002. SHRIMP U-Pb Zircon Geochronology of the Fuping Complex: Implications for Formation and Assembly of the North China Craton. Precambrian Research, 113: 1–18. doi: 10.1016/S0301-9268(01)00197-8
    Harper, G. D., 1985. Dismembered Archean Ophiolite, Wind River Mountains, Wyoming (USA). Ofioliti, 10(2–3): 297–305
    Harper, G. D., 1999. Structural Styles of Hydrothermal Discharge in Ophiolite/Sea-Floor Systems. Reviews in Economic Geology, 8: 53–73
    He, G. P., Lu, L. Z., Ye, H. W., 1991. The Early Precambrian Metamorphic Evolution of the Eastern Hebei and the Southeastern Inner Mongolia. Jilin University Press, Changchun. 1–17 (in Chinese with English Abstract)
    He, T. X., Lin, Q., Fang, Z. R., et al., 1992. The Petrogenesis of Granitic Rocks in Eastern Hebei. Jilin Science and Tech nology Press, Changchun. 1–4 (in Chinese with English Abstract)
    Helmstaedt, H., Padgham, W. A., Brophy, J. A., 1986. Multiple Dikes in the Lower Kam Group, Yellowknife Greenstone Belt: Evidence for Sea-Floor Spreading? Geology, 14: 562–566 doi: 10.1130/0091-7613(1986)14<562:MDILKG>2.0.CO;2
    Holtzman, B., 2000. Gauging Stress from Mantle Chromitite Pods in the Oman Ophiolite. In: Dilek, Y., Moores, E. M., Elthon, D., et al., eds., Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program. Geological Society of America Special Paper, 349: 149–158
    Huang, X. N., Li, J. H., Kusky, T. M., et al., 2004. Microstructures of the Zunhua 2.50 Ga Podiform Chromite, North China Craton and Implications for the Deformation and Rheology of the Archean Oceanic Lithospheric Mantle. In: Kusky, T. M., ed., Precambrian Ophiolites and Related Rocks. Developments in Precambrian Geology, 13: 321–337
    Huson, R., Kusky, T. M., Li, J. H., 2004. Geochemical and Petrographic Characteristics of the Central Belt of the Archean Dongwanzi Ophiolite Complex. In: Kusky, T. M., ed., Precambrian Ophiolites and Related Rocks. Developments in Precambrian Geology, 13: 283–320
    Irvine, T. N., 1965. Chromian Spinel as a Petrogenetic Indicator: Part 1, Theory. Canadian Journal of Earth Science, 2: 648–672 doi: 10.1139/e65-046
    Irvine, T. N., 1967. Chromian Spinel as a Petrogenetic Indicator: Part 2, Petrologic Applications. Canadian Journal of Earth Science, 4(1): 71–103 doi: 10.1139/e67-004
    Jahn, B. M., Auvray, B., Cornichet, J., et al., 1987. 3.5 Ga Old Amphibolites from Eastern Hebei Province, China: Field Occurrence, Petrography, Sm-Nd Isochron Age and REE Geochemistry. Precambrian Research, 34(3–4): 311–346
    Jahn, B. M., Zhang, Z. Q., 1984a. Archean Granulite Gneisses from Eastern Hebei Province, China: Rare Earth Geochemistry and Tectonic Implications. Contributions to Mineralogy and Petrology, 85(3): 224–243 doi: 10.1007/BF00378102
    Jahn, B. M., Zhang, Z. Q, 1984b. Radiometric Ages (Rb-Sr, Sm-Nd, U-Pb) and REE Geochemistry of Archaean Granulite Gneisses from Eastern Hebei Province, China. In: Kroener, A., Hanson, G., Goodwin, A., eds., Archaean Geochemistry. Springer-Verlag, Berlin. 204–234
    Jan, M. Q., Windley, B. F., 1990. Chromian Spinel-Silicate Chemistry in Ultramafic Rocks of the Jijal Complex, Northwest Pakistan. Journal of Petrology, 31(3): 667–715 doi: 10.1093/petrology/31.3.667
    Johnson, P. R., Kattan, F. H., Al-Saleh, A. M., 2004. Neoproterozoic Ophiolites in the Arabian Shield: Field Relations and Structure. In: Kusky, T. M., ed., Precambrian Ophiolites and Related Rocks. Developments in Precambrian Geology, 13: 129–162
    Johnston, W. D., 1936. Nodular, Orbicular, and Banded Chromite in Northern California. Economic Geology, 31: 417–427 doi: 10.2113/gsecongeo.31.4.417
    Kamenetsky, V. S., Crawford, A. J., Meffre, S., 2001. Factors Controlling Chemistry of Magmatic Spinel: An Empirical Study of Associated Olivine, Cr Spinel and Melt Inclusions from Primitive Rocks. Journal of Petrology, 42(4): 655–671 doi: 10.1093/petrology/42.4.655
    Karson, J. A., 2001. Oceanic Crust when Earth was Young. Science, 292(5519): 1076–1077 doi: 10.1126/science.1061081
    Kelemen, P. B., 1990. Reaction between Ultramafic Rock and Fractionating Basaltic Magma: I. Phase Relations, the Origin of Cal-Alkaline Magma Series and the Formation of Discordant Dunite. Journal of Petrology, 31(1): 51–98 doi: 10.1093/petrology/31.1.51
    Kelemen, P. B., Joyce, D. B., Webster, J. D., et al., 1990. Reaction between Ultramafic Rock and Fractionating Basaltic Magma: II. Experimental Investigation of Reaction between Olivine Tholeiite and Harzburgite at 1 150–1 050 Degrees C and 5 kb. Journal of Petrology, 31(1): 99–134 doi: 10.1093/petrology/31.1.99
    Kepezhinskas, P. K., Taylor, R. N., Tanaka, H., 1993. Geochemistry of Plutonic Spinels from the North Kamchatka Arc: Comparisons with Spinels from Other Tectonic Settings. Mineralogical Magazine, 57: 575–589 doi: 10.1180/minmag.1993.057.389.02
    Kontinen, A., 1987. An Early Proterozoic Ophiolite—The Jormua Mafic-Ultramafic Complex, Northeastern Finland. Precambrian Research, 35: 313–341 doi: 10.1016/0301-9268(87)90061-1
    Kroener, A., 1985. Ophiolites and the Evolution of Tectonic Boundaries in the Late Proterozoic Arabian-Nubian Shield of Northeast Africa and Arabia. Precambrian Research, 27(1–3): 277–300
    Kroener, A., Cui, W. Y., Wang, S. Q., et al., 1998. Single Zircon Ages from High-Grade Rocks of the Jianping Complex, Liaoning Province, NE China. Journal of Asia Earth Sciences, 16(5–6): 519–532
    Kroener, A., Wilde, S. A., Li, J. H., et al., 2005. Age and Evolution of a Late Archean to Paleoproterozoic Upper to Lower Crustal Section in the Wutaishan/Hengshan/Fuping Terrane of Northern China. Journal of Asian Earth Sciences, 24(5): 577–595 doi: 10.1016/j.jseaes.2004.01.001
    Kusky, T. M., 1987. Comment and Reply on "Multiple Dikes in the Lower Kam Group, Yellowknife Greenstone Belt: Evidence for Archean Sea-Floor Spreading?": Comment. Geology, 15: 280–281 doi: 10.1130/0091-7613(1987)15<280:CAROMD>2.0.CO;2
    Kusky, T. M., 1990. Evidence for Archean Ocean Opening and Closing in the Southern Slave Province. Tectonics, 9(6): 1533–1563 doi: 10.1029/TC009i006p01533
    Kusky, T. M., 1991. Structural Development of an Archean Orogen, Western Point Lake, Northwest Territories. Tectonics, 10(4): 820–841 doi: 10.1029/91TC00765
    Kusky, T. M., 2004. Precambrian Ophiolites and Related Rocks. Developments in Precambrian Geology, 13: 727–737
    Kusky, T. M., Li, J. H., 2002. Is the Dongwanzi Complex an Archean Ophiolite? Response to Zhai, M., Zhao, G., Zhang, Q. . Science, 295(5557)
    Kusky, T. M., Li, J. H., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383–397 doi: 10.1016/S1367-9120(03)00071-3
    Kusky, T. M., Li, J. H., Tucker, R. D., 2001. The Archean Dongwanzi Ophiolite Complex, North China Craton: 2.505 Billion Year Old Oceanic Crust and Mantle. Science, 292(5519): 1142–1145 doi: 10.1126/science.1059426
    Kusky, T. M., Glass, A., Tucker, R., 2007a. Structure, Cr-Chemistry, and Age of the Border Ranges Ultramafic-Mafic Complex: A Suprasubduction Zone Ophiolite Complex. In: Ridgway, K. D., Trop, J. M., Glen, J. M. G., et al., eds., Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska. Geological Society of America Special Paper, 207–225
    Kusky, T. M., Windley, B. F., Zhai, M. G., 2007b. Tectonic Evolution of the North China Block: From Orogen to Craton to Orogen. In: Zhai, M. G., Windley, B. F., Kusky, T. M., et al., eds., Mesozoic Sub-continental Lithospheric Thinning under Eastern Asia. Geological Society of London Special Publication, 280: 1–34
    Kusky, T. M., Li, J. H., Santosh, M., 2007c. The Paleoproterozoic North Hebei Orogen: North China Craton's Collisional Suture with the Columbia Supercontinent. In: Zhai, M. G., Xiao, W. J., Kusky, T. M., et al., eds., Tectonic Evolution of China and Adjacent Crustal Fragments. Special Issue of Gondwana Research, 12(1–2): 4–28
    Kusky, T. M., Zhi, X. C., Li, J. H., et al., 2007d. Chondritic Osmium Isotopic Composition of Archean ophiolitic Mantle, North China Craton. In: Zhai, M. G., Xiao, W. J., Kusky, T. M., et al., eds., Tectonic Evolution of China and Adjacent Crustal Fragments. Special Issue of Gondwana Research, 12(1–2): 67–76
    Kusky, T. M., Polat, A., 1999. Growth of Granite-Greenstone Terranes at Convergent Margins and Stabilization of Archean Cratons. In: Marshak, S., Van Der Pluijm, B. A., Hamburger, M., eds., The Tectonics of Continental Interiors. Tectonophysics, 305(1–3): 43–73
    Kusky, T. M., Santosh, M., 2009. The Columbia Connection in North China. In: Reddy, S. M., Mazumder, R., Evans, D. A. D., et al., eds., Palaeoproterozoic Supercontinents and Global Evolution. Geological Society of London Special Publication, 323: 49–71
    Kusky, T. M., Vearncombe, J., 1997. Structure of Archean Greenstone Belts. In: De-Wit, M. J., Ashwal, L. D., eds., Tectonic Evolution of Greenstone Belts. Oxford Monograph on Geology and Geophysics, 35: 95–128
    Kusky, T. M., Young, C. P., 1999. Emplacement of the Resurrection Peninsula Ophiolite in the Southern Alaska Forearc during a Ridge-Trench Encounter. Journal of Geophysical Research, 104(B12): 2925–2954
    Lago, B. L., Rabinowicz, M., Nicolas, A., 1982. Podiform Chromite Ore Bodies: A Genetic Model. Journal of Petrology, 23(1): 103–125 doi: 10.1093/petrology/23.1.103
    LeBlanc, M., 1997. Chromitite and Ultramafic Rock Compositional Zoning through a Paleotransform Fault, Poum, New Caledonia: Reply. Economic Geology, 92: 503–504 doi: 10.2113/gsecongeo.92.4.503
    LeBlanc, M., Nicholas, A., 1992. Ophiolitic Chromitites. International Geology Review, 34: 653–686 doi: 10.1080/00206819209465629
    Li, J. H., Kusky, T. M., 2007a. World's Largest Known Precambrian Fossil Black Smoker Chimneys and Associated Microbial Vent Communities, North China: Implications for Early Life. In: Zhai, M. G., Xiao, W. J., Kusky, T. M., et al., eds., Tectonic Evolution of China and Adjacent Crustal Fragments. Special Issue of Gondwana Research, 12(1–2): 84–100
    Li, J. H., Kroener, A., Qian, X. L., et al., 2000b. Tectonic Evolution of an Early Precambrian High-Pressure Granulite Belt, North China Craton (NCC). Acta Geologica Sinica, 74(2): 246–256
    Li, J. H., Kusky, T. M., 2007b. A Late Archean Foreland Fold and Thrust Belt in the North China Craton: Implications for Early Collisional Tectonics. In: Zhai, M. G., Xiao, W. J., Kusky, T. M., et al., eds., Tectonic Evolution of China and Adjacent Crustal Fragments. Special Issue of Gondwana Research, 12(1–2): 47–66
    Li, J. H., Kusky, T. M., Huang, X. N., 2002. Archean Podiform Chromitites and Mantle Tectonites in Ophiolitic Mélange, North China Craton: A Record of Early Oceanic Mantle Processes. GSA Today, 12(7): 4–11 doi: 10.1130/1052-5173(2002)012<0004:APCAMT>2.0.CO;2
    Li, J. H., Kusky, T. M., Niu, X. L., et al., 2004. Neo-Archean Massive Sulfide of Wutai Mountain, North China: A Black Smoker Chimney and Mound Complex within 2.50-Ga-Old Oceanic Crust. In: Kusky, T. M., ed., Precambrian Ophiolites and Related Rocks. Developments in Precambrian Geology, 13: 339–362
    Li, J. H., Qian X. L., Huang, X. N., et al., 2000a. Basement Tectonic Framework of the North China Platform and Its Cratonization in the Early Precambrain. Acta Petrologica Sinica, 16(1): 1–10 (in Chinese with English Abstract)
    Li, J. H., Qian, X. L., Gu, Y. C., 1998. Outline of Paleoproterozoic Tectonic Division and Plate Tectonic Evolution of North China Platform. Earth Science, 23(3): 230–235
    Lippard, S. J., Shelton, A. W., Gass, I. G., 1986. The Ophiolite of Northern Oman. Geological Society of London Memoir, 11: 178
    Liu, D. Y., Wilde, S. A., Wan, Y. S., et al., 2009. Combined U-Pb, Hafnium and Oxygen Isotope Analysis of Zircons from Meta-igneous Rocks in the Southern North China Craton Reveal Multiple Events in the Late Mesoarchean-Early Neoarchean. Chemical Geology, 261(1–2): 139–153
    Liu, S., Pan, Y., Xie, Q., et al., 2004, Archean Geodynamics in the Central Zone, North China Craton: Constraints from Geochemistry of Two Contrasting Series of Granitoids in the Fuping and Wutai Complexes. Precambrian Research, 130: 229–249, doi: 10.1016/j.precamres.2003.12.001
    MacLachlan, K., Helmstaedt, H., 1995. Geology and Geochemistry of an Archean Mafic Dike Complex in the Chan Formation: Basis for a Revised Plate-Tectonic Model of the Yellowknife Greenstone Belt. Canadian Journal of Earth Science, 32(5): 614–630 doi: 10.1139/e95-052
    Matsumoto, I., Arai, S., 1999. Morphological Variations of Chromian Spinel in Dunite and Harzburgite from the Sangun Zone, Southwest Japan, as a Marker of Melt/Peridotite Reaction. Science Reports of the Kanazawa University, 44(1–2): 11–24
    Matveev, S., Ballhaus, C., 2002. Role of Water in the Origin of Podiform Chromite Deposits. Earth and Planetary Science Letters, 203(1): 235–243 doi: 10.1016/S0012-821X(02)00860-9
    Menzies, M. A., Fan, W. M., Zhang, M., 1993. Palaeozoic and Cenozoic Lithoprobes and the Loss of > 120 km of Archaean Lithosphere, Sino-Korean Craton, China. In: Prichard, H. M., Alabaster, T., Harris, N. B., et al., eds., Magmatic Processes and Plate Tectonics. Geological Society Special Publications, 76: 71–81
    Moores, E. M., 1982. Origin and Emplacement of Ophiolites. Reviews of Geophysics and Space Physics, 20(4): 735–760 doi: 10.1029/RG020i004p00735
    Moores, E. M., 2002. Pre-1 Ga (Pre-Rodinian) Ophiolites: Their Tectonic and Environmental Implications. Geological Society of America Bulletin, 114: 80–95 doi: 10.1130/0016-7606(2002)114<0080:PGPROT>2.0.CO;2
    Nicolas, A., 1989. Structures of Ophiolites and Dynamics of Oceanic Lithosphere. Kluwer Academic Publishers, Boston. 367
    Nicolas, A., Al-Azri, H., 1991. Chromite-Rich and Chromite-Poor Ophiolites: The Oman Case. In: Peters, T. J., Nicolas, A., Coleman, R. G., eds., Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Petrology and Structural Geology, 5: 261–274
    Nicolas, A., Boudier, F., 2000. Large Mantle Upwellings and Related Variations in Crustal Thickness in the Oman Ophiolite. In: Dilek, Y., Moores, E. M., Elthon, D., et al., eds., Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program. Geological Society of America Special Paper, 349: 67–73
    O'Brien, P. J., Walte, N., Li, J. H., 2005. The Petrology of Two Distinct Granulite Types in the Hengshan Mtns., China, and Tectonic Implications. Journal of Asian Earth Sciences, 24(5): 615–627 doi: 10.1016/j.jseaes.2004.01.002
    Orberger, B., Lorand, J. P., Girardeau, J., et al., 1995. Petrogenesis of Ultramafic Rocks and Associated Chromitites in the Nan Uttaradit Ophiolite, Northern Thailand. Lithos, 35(3–4): 153–182
    Parkinson, I. J., Pearce, J. A., 1998. Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): Evidence for Mantle Melting and Melt-Mantle Interaction in a Supra-Subduction Zone Setting. Journal of Petrology, 39(9): 1577–1618 doi: 10.1093/petroj/39.9.1577
    Parson, L. M., Murton, B. J., Browning, P., 1992. Ophiolites and Their Modern Oceanic Analogues. Geological Society Special Publication, 60: 330
    Peltonen, P., Kontinen, A., 2004. The Jormua Ophiolite: A Mafic-Ultramafic Complex from an Ancient Ocean-Continent Transition Zone. In: Kusky, T. M., ed., Precambrian Ophiolites and Related Rocks. Developments in Precambrian Geology, 13: 35–72
    Peng, P., Zhai, M. G., Guo, J. H., et al., 2007. Nature of Mantle Source Contributions and Crystal Differentiation in the Petrogenesis of the 1.78 Ga Mafic Dikes in the Central North China Craton. In: Zhai, M. G., Xiao, W. J., Kusky, T. M., et al., eds., Tectonic Evolution of China and Adjacent Crustal Fragments. Gondwana Research, 12(1–2): 29–46
    Peters, T. J., Nicolas, A., Coleman, R. G., 1991. Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Kluwer Academic Publishers, Boston. 903
    Phillips-Lander, C. M., Dilek, Y., 2008. Structural Architecture of the Sheeted Dike Complex and Extensional Tectonics of the Jurassic Mirdita Ophiolite, Albania. Lithos, 108(1–4): 192–206
    Polat, A., Herzberg, C., Münker, C., et al., 2006. Geochemical and Petrological Evidence for a Suprasubduction Zone Origin of Neoarchean (ca. 2.5 Ga) Peridotites, Central Orogenic Belt, North China Craton. Geological Society of America Bulletin, 118: 771–784 doi: 10.1130/B25845.1
    Polat, A., Kusky, T. M., Li, J. H., 2007. Geochemistry of Neoarchean (ca. 2.55–2.50 Ga) Volcanic and Ophiolitic Rocks in the Wutaishan Greenstone Belt, Central Orogenic Belt, North China Craton: Implications for Geodynamic Setting and Continental Growth: Reply. Geological Society of America Bulletin, 119: 490–492 doi: 10.1130/B26163.1
    Polat, A., Kusky, T. M., Li, J. H., et al., 2005. Geochemistry of Neoarchean (ca. 2.55–2.50 Ga) Volcanic and Ophiolitic Rocks in the Wutaishan Greenstone Belt, Central Orogenic Belt, North China Craton: Implications for Geodynamic Setting and Continental Growth. Geological Society of America Bulletin, 117: 1387–1399 doi: 10.1130/B25724.1
    Power, M. R., Pirrie, D., Anderson, J. C., et al., 2000. Testing the Validity of Chrome Spinel Chemistry as a Provenance and Petrogenetic Indicate. Geology, 28: 1027–1030 doi: 10.1130/0091-7613(2000)28<1027:TTVOCS>2.0.CO;2
    Proenza, J., Gervilla, F., Melgarejo, J. C., et al., 1999. Al- and Cr-Rich Chromitites from the Mayari-Baracoa Ophiolitic Belt (Eastern Cuba): Consequence of Interaction between Volatile-Rich Melts and Peridotites in Suprasubduction Mantle. Economic Geology, 94: 547–566 doi: 10.2113/gsecongeo.94.4.547
    Rasmussen, B., 2000. Filamentous Microfossils in a 3.235 Million Year-Old Volcanogenic Massive Sulphide Deposit. Nature, 405(6787): 676–679 doi: 10.1038/35015063
    Reed, C., 2002. Chimneys from an Ancient Ocean. Geotimes, 23
    Regional Geological Survey Team of Hebei Geology and Mineral Resources Bureau, 1988. Regional Geology Survey Reports of Xiabancheng Breadth, Breadth and Taipingzhai Breadth. 1: 50 000 (in Chinese)
    Robinson, P. T., Malpas, J., Dilek, Y., et al., 2009. The Significance of Sheeted Dike Complexes in Ophiolites. GSA Today, 18(11): 4–11
    Roeder, P. L., Reynolds, I., 1991. Crystallisation of Chromite and Chromium Solubility in Basaltic Melts. Journal of Petrology, 32: 909–934 doi: 10.1093/petrology/32.5.909
    Scott, D. J., Helmstaedt, H., Bickle, M. J., 1992. Purtuniq Ophiolite, Cape Smith Belt, Northern Quebec, Canada: A Reconstructed Section of Early Proterozoic Oceanic Crust. Geology, 20: 173–176 doi: 10.1130/0091-7613(1992)020<0173:POCSBN>2.3.CO;2
    Scott, D. J., St. Onge, M. R., Lucas, S. B., et al., 1991. Geology and Chemistry of the Early Proterozoic Purtuniq Ophiolite, Cape Smith Belt, Northern Quebec, Canada. In: Peters, T. J., ed., Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Petrology and Structural Geology, 5: 817–849
    Shen, Q. H., Xu, H. F, Zhang Z. Q., 1992. The Early Precambrian Granulites in China. Geological Publishing House, Beijing. 134–140 (in Chinese)
    Shervais, J. W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59(1): 101–118 doi: 10.1016/0012-821X(82)90120-0
    Shervais, J., 2003. Ophiolites and Oceanic Crust, New Insights from Field Studies and the Ocean Drilling Program. In: Dilek, Y., Moores, E., Elthon, D., et al., eds., Geological Society of America Special Paper, 349: 552
    Shirey, S. B., Walker, R. J., 1998. The Re-Os Isotope System in Cosmochemistry and High Temperature Geochemistry. Annu. Rev. Earth Planet. Sci. , 26: 423–500 doi: 10.1146/annurev.earth.26.1.423
    Sleep, N. H., Windley, B. F., 1982. Archean Plate Tectonics: Constraints and Inferences. Journal of Geology, 90(4): 363–379 doi: 10.1086/628691
    Stern, R. J., Johnson, P. R., Kroener, A., et al., 2004. Neoproterozoic Ophiolites of the Arabian-Nubian Shield. In: Kusky, T. M., ed., Precambrian Ophiolites and Related Rocks. Developments in Precambrian Geology, 13: 95–128
    Stowe, C. W., 1987. Chromite Deposits of the Shurugwi Greenstone Belt, Zimbabwe. In: Stowe, C. W., ed., Evolution of Chromium Ore Fields. Van Nostrand-Reinhold, New York. 71–88
    Stowe, C. W., 1994. Compositions and Tectonic Settings of Chromite Deposits through Time. Economic Geology, 89: 528–546 doi: 10.2113/gsecongeo.89.3.528
    Sylvester, P. J., Harper, G. D., Byerly, G. R., et al., 1997. Volcanic Aspects. In: De-Wit, M. J., Ashwal, L. D., eds., Greenstone Belts. Oxford Monographs on Geology and Geophysics, 35: 55–90
    Thayer, T. P., 1969. Gravity Differentiation and Magmatic Re-emplacement of Podiform Chromite Deposits. In: Magmatic Ore Deposits. Economic Geology Monographs, 4: 132–146
    Tian, Y. Q., 1991. Geology and Mineralization of the Wutai-Hengshan Greenstone Belt. Shanxi Science and Technology Press, Taiyuan. 137–152 (in Chinese)
    Tsuru, A., Walker, R. J., Kontinen, A., et al., 2000. Re-Os Isotopic Systematics of the Jormua Ophiolite Complex, NW Finland. Chem. Geol. , 164: 123–141 doi: 10.1016/S0009-2541(99)00134-5
    Ulmer, C. G., 1974. Alteration of Chromite during Serpentinization in the Pennsylvania-Maryland District. American Mineralogist, 59(11–12): 1236–1241
    Vuollo, J., Liipo, J., Nykanen, V., et al., 1995. An Early Proterozoic Podiform Chromitite in the Outokumpu Ophiolite Complex, Finland. Economic Geology, 90: 445–452 doi: 10.2113/gsecongeo.90.2.445
    Walker, R. J., Prichard, H. M., Ishiwatari, A., et al., 2002. The Osmium Isotope Composition of Convecting Upper Mantle Deduced from Ophiolite Chromites. Geochim. Cosmochim. Acta, 66: 329–345 doi: 10.1016/S0016-7037(01)00767-0
    Wan, Y. S., Geng, Y. S., Wu, J. S., 1998. The Geochemistry of Early Precambrian Metabasaltic Rocks of North China Craton. In: Cheng, Y. Q., ed., Proceeding of Precambrian Geology of North China Craton. Geological Publishing House, Beijing. 39–59 (in Chinese)
    Wang, K. Y., Li, J. L., Hao, J., 1997. Late Archaean Mafic-Ultramafic Rocks from the Wutaishan, Shanxi Province: A Possible Ophiolite Mélange. Acta Petrologica Sinica, 13(2): 139–151 (in Chinese with English Abstract)
    Wang, K. Y., Li, J. L., Hao, J., et al., 1996. The Wutaishan Orogenic Belt within the Shanxi Province, Northern China: A Record of Archean Collision Tectonics. Precambrian Research, 78: 95–103 doi: 10.1016/0301-9268(95)00071-2
    Wang, Q. C., Zhang, S. Q., 1995. The Age of the Hongqiyingzi Group: A Further Discussion. Regional Geology of China, 2: 173–180 (in Chinese with English Abstract)
    Wang, Z., Wilde, S. A., Wang, K., et al., 2004, A MORB Arc Basalt-Adakite Association in the 2.5 Ga Wutai Greenstone Belt: Late Archean Magmatism and Crust Growth in the North China Craton. Precambrian Research, 131: 323–343. doi: 10.1016/j.precamres.2003.12.014
    Wilde, S. A., Cawood, P. A., Wang, K. Y., et al., 1998. SHRIMP U-Pb Zircon Dating of Granites and Gneisses in the Taihangshan-Wutaishan Area: Implications for the Timing of Crustal Growth in the North China Craton. Chinese Science Bulletin, 43(Suppl. ): 144–145
    Wilde, S. A., Zhao, G. C., Sun, M., 2002. Development of the North China Craton during the Late Archaean and Its Final Amalgamation at 1.8 Ga: Some Speculations on Its Position within a Global Palaeoproterozoic Supercontinent. Gondwana Research, 5(1): 85–94 doi: 10.1016/S1342-937X(05)70892-3
    Wilde, S. A., Zhao, G. C., Wang, K. Y., et al., 2004. First SHRIMP Zircon U-Pb Ages for the Hutuo Group, Wutaishan: Further Evidence for Palaeoproterozoic Amalgamation of the North China Craton. Chinese Science Bulletin, 49(1): 83–90 doi: 10.1007/BF02901747
    Wilde, S. A., Zhou, X. H., Nemchin, A. A., et al., 2003. Mesozoic Crust-Mantle Interaction beneath the North China Craton: A Consequence of the Dispersal of Gondwanaland and Accretion of Asia. Geology, 31: 817–820 doi: 10.1130/G19489.1
    Wilks, M. E., Harper, G. D., 1997. Wind River Range, Wyoming Craton. In: De-Wit, M. J., Ashwal, L. D., eds., Greenstone Belts. Oxford Monograph on Geology and Geophysics, 35: 508–516
    Wood, B. J., Virgo, D., 1989. Upper Mantle Oxidation State: Ferric Iron Contents of Lherzolite Spinels by 57Fe Moessbauer Spectroscopy and Resultant Oxidation Fugacities. Geochimica et Cosmochimica Acta, 53(6): 1277–1291 doi: 10.1016/0016-7037(89)90062-8
    Wu, C. H., Zhong, C. T., 1998. The Paleoproterozoic SW-NE Collision Model for the Central North China Craton: Implications for Tectonic Regime of the Khondalite Downward into Lower Crust in Jinmeng High-Grade Region. Progress of Precambrian Research, 21(3): 28–50 (in Chinese with English Abstract)
    Wu, J. S., Geng, Y. S., Shen, Q. H., 1998. Archean Geology Characteristics and Tectonic Evolution of Sino-Korea Paleocontinent. Geological Publishing House, Beijing. 1–104 (in Chinese)
    Wu, J. S., Geng, Y. S., Shi, Q. H., 1992. The Precambrian Major Geological Events of North China Craton. Geological Publishing House, Beijing. 1–10
    Xu, Z. G., 1990. Mesozoic Volcanism and Volcanogenic Iron Ore Deposits in Eastern China. Geological Society of America Special Paper, 237: 46
    Zhai, M. G., Windley, B. F., Kusky, T. M., et al., 2007. Mesozoic Sub-continental Lithospheric Thinning under Eastern Asia. Geological Society of London Special Publication, 280: 352
    Zhang, Q. S., Yang, Z. S., Gao, D. Y., 1991. The Archean High-Grade Metamorphic Geology and Gold Deposits in Jinchangyu Area of Eastern Hebei. Geological Publishing House, Beijing. 1–5 (in Chinese)
    Zhang, Y. X., Ye, T. S., Yang, H. Q., 1986. The Archean Geology and Banded Iron Formation of Jidong, Hebei Province. Geological Publishing House, Beijing. 1–22 (in Chi nese with English Abstract)
    Zhao, G. C., 2001. Paleoproterozoic Assembly of the North China Craton. Geological Magazine, 138: 87–91 doi: 10.1017/S0016756801005040
    Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177–202 doi: 10.1016/j.precamres.2004.10.002
    Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural andP-T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1–2): 45–73
    Zhao, G. C., Wilde, S. A., Li, S. Z., et al., 2009. U-Pb Zircon Age Constraints on the Dongwanzi Ultramafic-Mafic Body, North China, Confirm It is not an Archean Ophiolite. Earth and Planetary Science Letters, 273(1–2): 231–234
    Zhao, G., Kröner, A., 2002, Introduction. In: Kröner, A., Zhao, G. C., Wilde, S. A., et al., eds., Late Archean to Paleoproterozoic Lower to Upper Crustal Section in the Hengshan-Wutaishan Area of North China. Guidebook for Penrose Conference Field Trip. 1–2
    Zhao, Z. P., 1993. The Precambrian Geological Evolution of Sino-Korean Paraplatform. Science Press, Beijing. 1–83 (in Chinese)
    Zheng, Y. F., Wu, F. Y., 2009. Growth and Reworking of Cratonic Lithosphere. Chinese Science Bullein, 54(14): 1945–1949 (in Chinese) doi: 10.1360/csb2009-54-14-1945
    Zheng, Z., O'Reilly, S. Y., Griffin, et al., 1998. Nature and Evolution of Cenozoic Lithospheric Mantle beneath Shandong Peainsula, Sino-Korean Craton, Eastern China. International Geology Review, 40: 471–499 doi: 10.1080/00206819809465220
    Zhou, M. F., Kerrich, R., 1992. Morphology and Composition of Chromite in Komatiites from the Belingwe Greenstone Belt, Zimbabwe. Canadian Mineralogist, 30: 303–317
    Zhou, M. F., Robinson, P. T., 1997. Origin and Tectonic Environment of Podiform Chromite Deposits. Economic Geology, 92: 259–262 doi: 10.2113/gsecongeo.92.2.259
    Zhou, M. F., Robinson, P. T., Bai, W. J., 1994. Formation of Podiform Chromitites by Melt/Rock Interaction in the Upper Mantle. Mineralium Deposita, 29(1): 98–101 doi: 10.1007/BF03326400
    Zhou, M. F., Robinson, P. T., Malpas, J., et al., 1996. Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet): Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle. Journal of Petrology, 37(1): 3–21 doi: 10.1093/petrology/37.1.3
    Zhu, R. X., Zheng, T. Y., 2009. Destruction Geodynamics of the North China Craton and Its Paleoproterozoic Plate Tectonics. Chinese Science Bulletin, 54(14): 1950–1961 (in Chinese) doi: 10.1360/csb2009-54-14-1950
    Ziegler, A. M., Rees, P. M., Rowley, D. B., et al., 1996. Mesozoic Assembly of Asia: Constraints from Fossil Floras, Tectonics, and Paleomagnetism. In: Yin, A., Harrison, T. M., eds., The Tectonic Evolution of Asia. Cambridge University Press, London. 371–400
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views(874) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return