Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 21 Issue 5
Oct 2010
Turn off MathJax
Article Contents
Feng Shi, Yongfeng Wang, Haijun Xu, Junfeng Zhang. Effects of Lattice Preferred Orientation and Retrogression on Seismic Properties of Eclogite. Journal of Earth Science, 2010, 21(5): 569-580. doi: 10.1007/s12583-010-0123-z
Citation: Feng Shi, Yongfeng Wang, Haijun Xu, Junfeng Zhang. Effects of Lattice Preferred Orientation and Retrogression on Seismic Properties of Eclogite. Journal of Earth Science, 2010, 21(5): 569-580. doi: 10.1007/s12583-010-0123-z

Effects of Lattice Preferred Orientation and Retrogression on Seismic Properties of Eclogite

doi: 10.1007/s12583-010-0123-z
Funds:

the National Natural Science Foundation of China 90714010

the National Natural Science Foundation of China 90714005

the National Natural Science Foundation of China 40821061

the National Natural Science Foundation of China 40702034

the Ministry of Education of China and the State Administration of Foreign Expert Affairs of China B07039

the Ministry of Education of China and the State Administration of Foreign Expert Affairs of China 2007B25

National Basic Research Program of China 2009CB825003

the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences 

More Information
  • We report here lattice preferred orientations (LPOs) and seismic properties of eclogites from the Sulu (苏鲁) UHP terrane. Our results show strong fabrics in omphacite and amphibole, and approximately random fabrics in garnet with or without strong shape preferred orientations (SPOs). Dislocation creep is likely to be responsible for the observed omphacite fabrics that vary with geometry and orientation of finite strain ellipsoid. Weak garnet LPOs suggest that garnet did not accommodate plastic strain or was not deformed by dislocation creep with a dominant slip system. The calculated seismic properties of eclogites and their component minerals show a strong correlation with their LPOs. Seismic anisotropies are mostly induced by omphacite component in fresh eclogites and by amphibole component in retrograded eclogites, respectively. Retrogression of omphacite to amphibole and quartz will increase seismic anisotropies but decreases seismic velocities of eclogite. Garnet component increases the seismic velocities but decreases seismic anisotropies of eclogite. Comparison of the calculated and the measured seismic properties of eclogites suggests that both methods resolve comparable results with some discrepancies. Compositional layering can play a very important role in determining the seismic properties of eclogites in addition to LPO.

     

  • loading
  • Ábalos, B., 1997. Omphacite Fabric Variation in the Cabo Ortegal Eclogite (NW Spain): Relationships with Strain Symmetry during High-Pressure Deformation. Journal of Structural Geology, 19(5): 621–637 doi: 10.1016/S0191-8141(97)00001-1
    Alexandrov, S. K., Ryzhova, T. V., 1961. The Elastic Properties of Rock Forming Minerals: Pyroxene and Amphibole. Bulletin of the Academy of Sciences of the U.S.S.R., Geophysics Series, 9: 1165–1168
    Anderson, D. L., 2006. Speculations on the Nature and Cause of Mantle Heterogeneity. Tectonophysics, 416(1–4): 7–22
    Baratoux, L., Lexa, O., Cosgrove, J. W., et al., 2005. The Quantitative Link between Fold Geometry, Mineral Fabric and Mechanical Anisotropy: As Exemplified by the Deformation of Amphibolites across a Regional Metamorphic Gradient. Journal of Structural Geology, 27(4): 707–730 doi: 10.1016/j.jsg.2005.01.001
    Barberini, V., Burlini, L., Zappone, A., 2007. Elastic Properties, Fabric and Seismic Anisotropy of Amphibolites and Their Contribution to the Lower Crust Reflectivity. Tectonophysics, 445(3–4): 227–244
    Bascou, J., Barruol, G., Vauchez, A., et al., 2001. EBSD-Measured Lattice-Preferred Orientations and Seismic Properties of Eclogites. Tectonophysics, 342(1–2): 61–80
    Bascou, J., Tommasi, A., Mainprice, D., 2002. Plastic Deformation and Development of Clinopyroxene Lattice Preferred Orientations in Eclogites. Journal of Structural Geology, 24(8): 1357–1368 doi: 10.1016/S0191-8141(01)00137-7
    Berger, A., Stünitz, H., 1996. Deformation Mechanisms and Reaction of Hornblende: Examples from the Bergell Tonalite (Central Alps). Tectonophysics, 257(2–4): 149–174
    Binns, R. A., 1967. Barroisite-Bearing Eclogite from Naustdal, Sogn og Fjordane, Norway. Journal of Petrology, 8(3): 349–371 doi: 10.1093/petrology/8.3.349
    Brenker, F. E., Prior, D. J., Müeller, W. F., 2002. Cation Ordering in Omphacite and Effect on Deformation Mechanism and Lattice Preferred Orientation (LPO). Journal of Structural Geology, 24(12): 1991–2005 doi: 10.1016/S0191-8141(02)00010-X
    Coleman, R. G., Wang, X., 1995. Ultrahigh Pressure Metamorphism. Cambridge University Press, New York. 544
    Collins, M. D., Brow, J. M., 1998. Elasticity of an Upper Mantle Clinopyroxene. Physics and Chemistry of Minerals, 26: 7–13 doi: 10.1007/s002690050156
    Den-Brok, B., Kruhl, J. H., Ji, S. C., et al., 1996. Ductility of Garnet as an Indicator of Extremely High Temperature Deformation: Discussion and Reply. Journal of Structural Geology, 18(11): 1369–1379 doi: 10.1016/S0191-8141(96)00064-8
    Dobrzhinetskaya, L. F., Schweinehage, R., Massonne, H. J., et al., 2002. Silica Precipitates in Omphacite from Eclogite at Alpe Arami, Switzerland: Evidence of Deep Subduction. Journal of Metamorphic Geology, 20(5): 481–492 doi: 10.1046/j.1525-1314.2002.00383.x
    Doukhan, N., Sautter, V., Doukhan, J. C., 1994. Ultradeep, Ultra-mafic Mantle Xenoliths-Transmission Electron Microscopy Preliminary Results. Physics of the Earth and Planetary Interiors, 82(3–4): 195–207
    Egydio-Silva, M., Vauchez, A., Bascou, J., et al., 2002. High-Temperature Deformation in the Neoproterozoic Transpressional Ribeira Belt, Southeast Brazil. Tectonophysics, 352(1–2): 203–224
    Fountain, D. M., Boundy, T. M., Austrheim, H., et al., 1994. Eclogite-Facies Shear Zones-Deep Crustal Reflectors? Tectonophysics, 232(1–4): 411–424
    Godard, G., Van-Roermund, H. L. M., 1995. Deformation-Induced Clinopyroxene from Eclogites. Journal of Structural Geology, 17(10): 1425–1443 doi: 10.1016/0191-8141(95)00038-F
    Hacker, B. R., Liou, J. G., 1998. When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks. Kluwer Academic Publishers, Dordrecht. 336
    Helmstaedt, H., Anderson, O. L., Gavasci, A. T., 1972. Petrofabric Studies of Eclogite, Spinel-Websterite, and Spinel-Lherzolite Xenoliths from Kimberlite-Bearing Breccia Pipes in Southeastern Utah and Northeastern Arizona. Journal of Geophysical Research, 77(23): 4350–4365 doi: 10.1029/JB077i023p04350
    Ji, S. C., Saruwatari, K., Mainprice, D., et al., 2003. Microstructures, Petrofabrics and Seismic Properties of Ultra High-Pressure Eclogites from Sulu Region, China: Implications for Rheology of Subducted Continental Crust and Origin of Mantle Reflections. Tectonophysics, 370(1–4): 49–76
    Jin, Z. M., Zhang, J. F., Green, H. W., et al., 2001. Eclogite Rheology: Implications for Subducted Lithosphere. Geology, 29: 667–670 doi: 10.1130/0091-7613(2001)029<0667:ERIFSL>2.0.CO;2
    Jung, H., Mo, W., Green, H. W., 2009. Upper Mantle Seismic Anisotropy Resulting from Pressure-Induced Slip Transition in Olivine. Nature Geoscience, 2(1): 73–77 doi: 10.1038/ngeo389
    Katayama, I., Hirauchi, K. I., Michibayashi, K., et al., 2009. Trench-Parallel Anisotropy Produced by Serpentine Deformation in the Hydrated Mantle Wedge. Nature, 461(7267): 1114–1117 doi: 10.1038/nature08513
    Kern, H., Jin, Z. M., Gao, S., et al., 2002. Physical Properties of Ultrahigh-Pressure Metamorphic Rocks from the Sulu Terrain, Eastern Central China: Implications for the Seismic Structure at the Donghai (CCSD) Drilling Site. Tectonophysics, 354(3–4): 315–330
    Kitamura, K., 2006. Constraint of Lattice-Preferred Orientation (LPO) on VP Anisotropy of Amphibole-Rich Rocks. Geophysical Journal of International, 165(3): 1058–1065 doi: 10.1111/j.1365-246X.2006.02961.x
    Leitner, B. J., Weidner, D. J., Liebermann, R. C., 1980. Elasticity of Single Crystal Pyrope and Implications for Garnet Solid Solution Series. Physics of the Earth and Planetary Interiors, 22: 111–121 doi: 10.1016/0031-9201(80)90052-7
    Mainprice, D., 1990. A Fortran Program to Calculate Seismic Anisotropy from the Lattice Preferred Orientation of Minerals. Computers and Geosciences, 16(3): 385–393 doi: 10.1016/0098-3004(90)90072-2
    Mainprice, D., Barruol, G., Ben-Ismail, W., 2000. The Anisotropy of the Earth's Mantle: From Single Crystal to Polycrystal. In: Karato, S. I., Forte, A. M., Liebermann, R. C., et al., eds., Mineral Physics and Seismic Tomography from the Atomic to the Global Scale. Geophysical Monograph Series, American Geophysical Union, Washington, 117: 237–264
    Mainprice, D., Bascou, J., Cordier, P., et al., 2004. Crystal Preferred Orientations of Garnet: Comparison between Numerical Simulations and Electron Back-Scattered Diffraction (EBSD) Measurements in Naturally Deformed Eclogites. Journal of Structural Geology, 26(11): 2089–2102 doi: 10.1016/j.jsg.2004.04.008
    Mainprice, D., Humbert, M., 1994. Methods of Calculating Petrophysical Properties from Lattice Preferred Orientation Data. Surveys in Geophysics, 15(5): 575–592 doi: 10.1007/BF00690175
    Mainprice, D., Nicolas, A., 1989. Development of Shape and Lattice Preferred Orientations: Application to the Seismic Anisotropy of the Lower Crust. Journal of Structural Geology, 11(1–2): 175–189
    Mauler, A., Burlini, L., Kunze, K., et al., 2000. P-Wave Anisotropy in Eclogites and Relationship to the Omphacite Crystallographic Fabric. Physics and Chemistry of the Earth (A), 25(2): 119–126 doi: 10.1016/S1464-1895(00)00020-X
    Mauler, A., Godard, G., Kunze, K., 2001. Crystallographic Fabrics of Omphacite, Rutile and Quartz in Vendee Eclogites (Armorican Massif, France): Consequences for Deformation Mechanisms and Regimes. Tectonophysics, 342(1–2): 81–112
    McSkimin, H. J., Andreatch, J. P., Thurston, R. N., 1965. Elastic Moduli of Quartz versus Hydrostatic Pressure at 25 and −195.8℃. Journal of Applied Physics, 36: 1624–1632 doi: 10.1063/1.1703099
    Piepenbreier, D., Stöeckhert, B., 2001. Plastic Flow of Omphacite in Eclogites at Temperatures below 500°—Implications for Interplate Coupling in Subduction Zones. International Journal of Earth Sciences, 90(1): 197–210 doi: 10.1007/s005310000159
    Prior, D. J., Wheeler, J., Brenker, F. E., et al., 2000. Crystal Plasticity of Natural Garnet: New Microstructural Evidence. Geology, 28: 1003–1006 doi: 10.1130/0091-7613(2000)28<1003:CPONGN>2.0.CO;2
    Rudnick, R. L., Barth, M., Horn, I., et al., 2000. Rutile-Bearing Refractory Eclogites: Missing Link between Continents and Depleted Mantle. Science, 287(5451): 278–281 doi: 10.1126/science.287.5451.278
    Siegesmund, S., Helming, K., Kruse, R., 1994. Complete Texture Analysis of a Deformed Amphibolite: Comparison between Neutron Diffraction and U-Stage Data. Journal of Structural Geology, 16(1): 131–142 doi: 10.1016/0191-8141(94)90024-8
    Skemer, P., Katayama, I, Jiang, Z. T., et al., 2005. The Misorientation-Index: Development of a New Method for Calculating the Strength of Lattice-Preferred Orientation. Tectonophysics, 411(1–4): 157–167
    Smith, D. C., 1988. Eclogites and Eclogite-Facies Rocks, Developments in Petrology. Elsevier, Amsterdam. 524
    Ulrich, S., Mainprice, D., 2005. Does Cation Ordering in Omphacite Influence Development of Lattice-Preferred Orientation? Journal of Structural Geology, 27(3): 419–431 doi: 10.1016/j.jsg.2004.11.003
    Wang, L., Jin, Z. M., Kusky, T., et al., 2010. Microfabric Characteristics and Rheological Significance of Ultra-High-Pressure Metamorphosed Jadeite-Quartzite and Eclogite from Shuanghe, Dabie Mountains, China. Journal of Metamorphic Geology, 28(2): 163–182 doi: 10.1111/j.1525-1314.2009.00859.x
    Wang, Q., Burlini, L., Mainprice, D., et al., 2009. Geochemistry, Petrofabrics and Seismic Properties of Eclogites from the Chinese Continental Scientific Drilling Boreholes in the Sulu UHP Terrane, Eastern China. Tectonophysics, 475(2): 251–266 doi: 10.1016/j.tecto.2008.09.027
    Wang, Q., Ji, S. C., Salisbury, M. H., et al., 2005a. Pressure Dependence and Anisotropy of P-Wave Velocities in Ultrahigh-Pressure Metamorphic Rocks from the Dabie-Sulu Orogenic Belt (China): Implications for Seismic Properties of Subducted Slabs and Origin of Mantle Reflections. Tectonophysics, 398(12): 67–99
    Wang, Q., Ji, S. C., Salisbury, M. H., et al., 2005b. Shear Wave Properties and Poisson's Ratios of Ultrahigh-Pressure Metamorphic Rocks from the Dabie-Sulu Orogenic Belt, China: Implications for Crustal Composition. Journal of Geophysical Research, 110(B8): B08208, doi: 10.1029/2004JB003435
    Xu, H. J., Zhang, S. X., Jin, Z. M., 2008. Crystallographic Preferred Orientation of Amphibole in Retrograded Eclogites. Journal of Chinese Electron Microscopy Society, 207: 506–511 (in Chinese with English Abstract)
    Xu, Z. Q., Wang, Q., Tang, Z. M., et al., 2009. Fabric Kinematics of the Ultrahigh-Pressure Metamorphic Rocks from the Main Borehole of the Chinese Continental Scientific Drilling Project: Implications for Continental Subduction and Exhumation. Tectonophysics, 475(2): 235–250 doi: 10.1016/j.tecto.2009.02.041
    Zhang, J. F., Green, H. W., 2007a. Experimental Investigation of Eclogite Rheology and Its Fabrics at High Temperature and Pressure. Journal of Metamorphic Geology, 25(2): 97–115 doi: 10.1111/j.1525-1314.2006.00684.x
    Zhang, J. F., Green, H. W., 2007b. On the Deformation of UHP Eclogite: From Laboratory to Nature. International Geology Review, 49(6): 487–503 doi: 10.2747/0020-6814.49.6.487
    Zhang, J. F., Green, H. W., Bozhilov, K. N., 2006. Rheology of Omphacite at High Temperature and Pressure and Significance of Its Lattice Preferred Orientations. Earth and Planetary Science Letters, 246(3–4): 432–443
    Zhang, J. F., Green, H. W., Bozhilov, K., et al., 2004. Faulting Introduced by Precipitation of Water at Grain Boundaries in Hot Subducting Oceanic Crust. Nature, 428(6983): 633–636 doi: 10.1038/nature02475
    Zhang, J. F., Wang, Y. F., Jin, Z. M., 2008. CPO-Induced Seismic Anisotropy in UHP Eclogites. Science in China (Sers. D), 51(1): 11–21 doi: 10.1007/s11430-007-0143-4
    Zhao, Z. D., Xie, H. S., Zhou, W. G., et al., 2001. Density and P-wave Velocity of the Eclogite in the Dabieshan and Its Implications for Crust-Mantle Recycling. Bulletin of Chinese Society of Mineralogy, Petrology and Geochemistry, 20(1): 6–10 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views(310) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return