Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 21 Issue 5
Oct 2010
Turn off MathJax
Article Contents
Yanbin Wang, Nadege Hilairet, Przemyslaw Dera. Recent Advances in High Pressure and Temperature Rheological Studies. Journal of Earth Science, 2010, 21(5): 495-516. doi: 10.1007/s12583-010-0124-y
Citation: Yanbin Wang, Nadege Hilairet, Przemyslaw Dera. Recent Advances in High Pressure and Temperature Rheological Studies. Journal of Earth Science, 2010, 21(5): 495-516. doi: 10.1007/s12583-010-0124-y

Recent Advances in High Pressure and Temperature Rheological Studies

doi: 10.1007/s12583-010-0124-y
Funds:

the National Science Foundation—Earth Sciences EAR-0622171

Department of Energy—Geosciences DE-FG02-94ER14466

the US Department of Energy, Office of Science, Office of Basic Energy Sciences DE-AC02-06CH11357

the NSF EAR0652574

the NSF EAR0711057

More Information
  • Corresponding author: Yanbin Wang, wang@cars.uchicago.edu
  • Received Date: 20 Mar 2010
  • Accepted Date: 10 May 2010
  • Publish Date: 01 Oct 2010
  • Rheological studies at high pressure and temperature using in-situ X-ray diffraction and imaging have made significant progresses in recent years, thanks to a combination of recent developments in several areas: (1) advances in synchrotron X-ray techniques, (2) advances in deformation devices and the abilities to control pressure, temperature, stress, strain and strain rates, (3) theoretical and computational advances in stress determination based on powder and single crystal diffraction, (4) theoretical and computational advances in modeling of grain-level micromechanics based on elasto-plastic and visco-plastic self-consistent formulations. In this article, we briefly introduce the experimental techniques and theoretical background for in-situ high pressure, high temperature rheological studies, and then review recent studies of rheological properties of major mantle materials. Some currently encountered issues have prompted developments in single-crystal quasi-Laue diffraction for complete stress tensor determination and textural evolution of poly-phased composites based on X-ray microtomography. Future prospects are discussed.

     

  • loading
  • Balchan, A. S., Drickamer, H. G., 1961. High Pressure Electrical Resistance Cell, and Calibration Points above 100 kbars. The Review of Scientific Instruments, 32: 308–313 doi: 10.1063/1.1717350
    Burnley, P. C., Zhang, D., 2008. Interpreting In Situ X-Ray Diffraction Data from High Pressure Deformation Experiments Using Elastic-Plastic Self-consistent Models: An Example Using Quartz. Journal of Physics, Condensed Matter, 20(28): 285201. doi: 10.1088/0953-8984/1020/285201
    Carrez, P., Walker, A. M., Metsue, A., et al. 2008. Evidence from Numerical Modeling for 3D Spreading of [001] Screw Dislocations in Mg2SiO4 Forsterite. Philosophical Magazine, 88(16): 2477–2845 doi: 10.1080/14786430802363804
    Cordier, P., Couvy, H., Merkel, S., et al., 2005. Plastic Deformation of Minerals at High Pressures: Experimental Techniques. EMU Notes in Mineralogy, 14: 339–355 https://www.mendeley.com/catalogue/70ffbc9c-5167-3956-abca-6ed5c0a0e02a/
    Downs, R. T., Singh, A. K., 2006. Analysis of Deviatoric Stress from Nonhydrostatic Pressure on a Single Crystal in a Diamond Anvil Cell: The Case of Monoclinic Aegirine, NaFeSi2O6. Journal of Physics and Chemistry of Solids, 67(9–10): 1995–2000 https://www.sciencedirect.com/science/article/abs/pii/S0022369706002861
    Duffy, T. S., Hemley, R. J., Mao, H. K., 1995. Equation of State and Shear-Strength at Multimegabar Pressures: Magnesium Oxide to 227 GPa. Physical Review Letters, 74(8): 1371–1374 doi: 10.1103/PhysRevLett.74.1371
    Durham, W. B., Goetze, C., 1977. Plastic Flow of Oriented Single Crystals of Olivine: 1. Mechanical Data. Journal of Geophysical Research, 82(36): 5737–5753 doi: 10.1029/JB082i036p05737
    Durham, W. B., Mei, S. H., Kohlstedt, D. L., et al., 2009. New Measurements of Activation Volume in Olivine under Anhydrous Conditions. Physics of the Earth and Planetary Interiors, 172(1–2): 67–73 https://www.sciencedirect.com/science/article/abs/pii/S0031920108002033
    Durham, W. B., Weidner, D. J., Karato, S. I., et al., 2002. New Developments in Deformation Experiments at High Pressure. In: Karato, S. I., Wenk, H. R., eds., Plastic Deformation of Minerals and Rocks, Reviews in Mineralogy. Mineralogical Society of America, Washington D.C. . 21–49
    Durnick, J., Legris, A., Cordier, P., 2005. Pressure Sensitivity of Olivine Slip Systems: First-Principle Calculations of Generalised Stacking Faults. Phys. Chem. Miner. , 32(8–9): 646–654 doi: 10.1007%2Fs00269-005-0041-2
    Eshelby, J. D., 1957. The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 241: 376–396 http://www.mendeley.com/catalog/determination-elastic-field-ellipsoidal-inclusion-related-problems/
    Funamori, N., Funamori, M., Jranloz, R., et al., 1997. Broadening of X-Ray Powder Diffraction Lines under Nonhydrostatic Stress. J. Appl. Phys. , 82(1): 142–146 doi: 10.1063/1.365792
    Gasperini, P., Sabadini, R., 1990. Finite Element Modeling of Lateral Viscosity Heterogeneities and Post-Glacial Rebound. Tectonophysics, 179(1–2): 141–149 https://www.sciencedirect.com/science/article/abs/pii/004019519090363D
    Handy, M. R., 1994. Flow Laws for Rocks Containing Two Non-linear Viscous Phases: A Phenomenological Approach. Journal of Structural Geology, 16(3): 287–301 doi: 10.1016/0191-8141(94)90035-3
    Hazen, R. M., Downs, R. T., Prewitt, C. T., 2000. Principles of Comparative Crystal Chemistry. In: Hazen, R. M., Downs, R. T., eds., High-Temperature and High-Pressure Crystal Chemistry. Mineralogical Society of America, Washington D.C. . 1–33
    Hilairet, N., Reynard, B., Wang, Y. B., et al., 2007. High-Pressure Creep of Serpentine, Interseismic Deformation, and Initiation of Subduction. Science, 318(5858): 1910–1913 doi: 10.1126/science.1148494
    Hilairet, N., Wang, Y. B., Sanehira, T., et al., 2010. Deformation of Olivine under Upper Mantle Conditions: Flow Laws and Deformation Mechanisms from In-Situ Monochromatic Difraction and Imaging. Earth and Planetary Science Letters (submitted)
    Hirth, G., Kohlstedt, D., 2003. Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists. In: Eiler, J., ed., Inside the Subduction Factory, Geophysical Monograph. American Geophysical Union, Washington, D.C. . 83–105
    Holyoke, C. W., Tullis, J., 2006. Mechanisms of Weak Phase Interconnection and the Effects of Phase Strength Contrast on Fabric Development. Journal of Structural Geology, 28(4): 621–640 doi: 10.1016/j.jsg.2006.01.008
    Hutchinson, J. W., 1970. Elastic-Plastic Behaviour of Polycrystalline Metals and Composites. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 319(1537): 247–272 http://www.socolar.com/Article/Index?aid=100022279233&jid=100000010036
    Ice, G., 2008. The Future of Spatially-Resolved Polychromatic Neutron and X-Ray Microdiffraction. Metallurgical and Materials Transactions A, 39(13): 3058–3064 doi: 10.1007/s11661-008-9570-x
    Irifune, T., 2009. Development of Multianvil Technqieus for Studies in Deep Earth Mineralogy. High Pressure Science and Technology, 19(1): 62–69 (in Japanese with English Abstract) doi: 10.4131/jshpreview.19.62
    Ischia, G., Wenk, H. R., Lutterotti, L., et al., 2005. Quantitative Reitveld Texture Analysis of Zirconium from Single Synchrotron Diffraction Images. Journal of Applied Crystal lography, 38: 377–380 doi: 10.1107/S0021889805006059
    Jung, H., Mo, W., Green, H. W., 2009. Upper Mantle Seismic Anisotropy Resulting from Pressure-Induced Slip Transition in Olivine. Nature Geosci. , 2(1): 73–77 doi: 10.1038/ngeo389
    Karato, S. I., Weidner, D. J., 2008. Laboratory Studies of the Rheological Properties of Minerals under Deep-Mantle Conditions. Elements, 4: 191–196 doi: 10.2113/GSELEMENTS.4.3.191
    Kawazoe, T., Karato, S. I., Otsuka, K., et al., 2009. Shear Deformation of Dry Polycrystalline Olivine under Deep Upper Mantle Conditions Using a Rotational Drickamer Apparatus (RDA). Physics of the Earth and Planetary Interiors, 174(1–4): 128–137 https://www.sciencedirect.com/science/article/abs/pii/S0031920108001593
    Kawazoe, T., Nishiyama, N., Nishihara, Y., et al., 2010. Pressure Generation to 25 GPa Using a Cubic Anvil Apparatus with a Multi-Anvil 6–6 Assembly. High Pressure Research, 30(1): 167–174 doi: 10.1080/08957950903503912
    Lebensohn, R. A., Tomé, C. N., 1994. A Self-Consistent Viscoplastic Model: Prediction of Rolling Textures of Anisotropic Polycrystals. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 175(1–2): 71–82 https://www.sciencedirect.com/science/article/abs/pii/0921509394910472
    Lesher, C. E., Wang, Y. B., Gaudio, S., et al., 2009. Volumetric Properties of Magnesium Silicate Glasses and Supercooled Liquid at High Pressure by X-Ray Microtomography. Physics of the Earth and Planetary Interiors, 174(1–4): 292–301 https://www.sciencedirect.com/science/article/abs/pii/S0031920108003403
    Li, L., Long, H. B., Raterron, P., et al., 2006a. Plastic Flow of Pyrope at Mantle Pressure and Temperature. American Mineralogist, 91: 517–525 doi: 10.2138/am.2006.1913
    Li, L., Weidner, D., Raterron, P., et al., 2006b. Deformation of Olivine at Mantle Pressure Using the D-DIA. European Journal of Mineralogy, 18: 7–19 doi: 10.1127/0935-1221/2006/0018-0007
    Li, L., Raterron, P., Weidner, D., et al., 2003. Olivine Flow Mechanisms at 8 GPa. Physics of the Earth and Planetary Interiors, 138(2): 113–129 doi: 10.1016/S0031-9201(03)00065-7
    Lonardelli, I., Wenk, H. R., Lutterotti, L., et al., 2005. Texture Analysis from Synchrotron Diffraction Images with the Rietveld Method: Dinosaur Tendon and Salmon Scale. Journal of Synchrotron Radiation, 12(3): 354–360 doi: 10.1107/S090904950500138X
    Lutterotti, L., Matthies, S., Wenk, H. R., 1999. MAUD: A Friendly Java Program for Materials Analysis Using Diffraction. Int. U. Crystallogr. Comm. Powder Diffraction Newsletter, 21: 14–15
    Matthies, S., Vinel, G. W., 1982. On the Reproduction of the Orientation Distribution Function of Textured Samples from Reduced Pole Figures Using the Conception of a Conditional Ghost Correction. Physica Status Solidi B-Basic Research, 112(2): K111–K114 doi: 10.1002/pssb.2221120254
    Merkel, S., Tomé, C., Wenk, H. R., 2009. Modeling Analysis of the Influence of Plasticity on High Pressure Deformation of hcp-Co. Physical Review B, 79(6): 064110, doi: 10.1103/PhysRevB.79.064110
    Merkel, S., Wenk, H., Shu, J. F., et al., 2002. Deformation of Polycrystalline MgO at Pressures of the Lower Mantle. J. Geophys. Res. , 107(B11)
    Merkel, S., Yagi, T., 2006. Effect of Lattice Preferred Orientation on Lattice Strains in Polycrystalline Materials Deformed under High Pressure: Application to hcp-Co. Journal of Physics and Chemistry of Solids, 67(9–10): 2119–2131 https://www.sciencedirect.com/science/article/abs/pii/S0022369706003064
    Milne, G. A., Mitrovica, J. X., Forte, A. M., 1998. The Sensitivity of Glacial Isostatic Adjustment Predictions to a Low-Viscosity Layer at the Base of the Upper Mantle. Earth and Planetary Science Letters, 154(1–4): 265–278 https://www.sciencedirect.com/science/article/abs/pii/S0012821X9700191X
    Miyagi, L., Nishiyama, N., Wang, Y. B., et al., 2008. Deformation and Texture Development in CaIrO3 Post-Perovskite Phase up to 6 GPa and 1 300 K. Earth and Planetary Science Letters, 268(3–4): 515–525 http://www.sciencedirect.com/science/article/pii/S0012821X08001015
    Nishihara, Y., 2008. Recent Technical Developments of High-Pressure Deformation Experiments. The Review of High Pressure Science and Technology, 18: 223–229 doi: 10.4131/jshpreview.18.223
    Nishihara, Y., Tinker, D., Kawazoe, T., et al., 2008. Plastic Deformation of Wadsleyite and Olivine at High-Pressure and High-Temperature Using a Rotational Drickamer Apparatus (RDA). Physics of the Earth and Planetary Interiors, 170(3–4): 156–169 https://www.sciencedirect.com/science/article/abs/pii/S0031920108000484
    Nishiyama, N., Wang, Y. B., Rivers, M. L., et al., 2007. Rheology of Epsilon-Iron up to 19 GPa and 600 K in the D-DIA. Geophys. Res. Lett. , 35(23): L23304 doi: 10.1029/2007GL031431
    Nishiyama, N., Wang, Y. B., Sanehira, T., et al., 2008. Development of the Multi-anvil Assembly 6-6 for DIA and D-DIA Type High-Pressure Apparatuses. High Pressure Research, 28(3): 307–314 doi: 10.1080/08957950802250607
    Nishiyama, N., Wang, Y. B., Uchida, T., et al., 2005. Pressure and Strain Dependence of the Strength of Sintered Polycrystalline Mg2SiO4 Ringwoodite. Geophys. Res. Lett. , 32(4): L04307, doi: 10.1029/2004GL022141.
    Nye, J. F., 1985. Physical Properties of Crystals: Their Representation by Tensors and Matrices. Clarendon Press, Oxford
    Paterson, M. S., Olgaard, D. L., 2000. Rock Deformation Tests to Large Shear Strains in Torsion. Journal of Structural Geology, 22(9): 1341–1358 doi: 10.1016/S0191-8141(00)00042-0
    Raterron, P., Amiguet, E., Chen, J. H., et al., 2009. Experimental Deformation of Olivine Single Crystals at Mantle Pressures and Temperatures. Physics of the Earth and Planetary Interiors, 172(1–2): 74–83 http://www.sciencedirect.com/science/article/pii/S0031920108001866
    Rivers, M. L., Sutton, S. R., Eng, P., 1999. Geoscience Applications of X-Ray Computed Microtomography. SPIE, 3772: 78–86 doi: 10.1117/12.363741
    Singh, A. K., 1993. The Lattice Strain in a Specimen (Cubic System) Compressed Nonhydrostatically in an Opposed Anvil Device. J. Appl. Phys. , 74(9): 5920–5920 doi: 10.1063/1.355347
    Takeda, Y. T., Griera, A., 2006. Rheological and Kinematical Responses to Flow of Two-Phase Rocks. Tectonophysics, 427(1–4): 95–113
    Turner, P. A., Tome, C. N., 1994. A Study of Residual-Stresses in Zircaloy-2 with Rod Texture. Acta Metallurgica et Materialia, 42(12): 4143–4153 doi: 10.1016/0956-7151(94)90191-0
    Uchida, T., Funamori, N., Yagi, T., 1996. Lattice Strains in Crystals under Uniaxial Stress Field. J. Appl. Phys. , 80(2): 739–746 doi: 10.1063/1.362920
    Uchida, T., Wang, Y. B., Rivers, M. L., et al., 2004. Yield Strength and Strain Hardening of MgO up to 8 GPa Measured in the Deformation-DIA with Monochromatic X-Ray Diffraction. Earth and Planetary Science Letters, 226(1–2): 117–126 https://www.sciencedirect.com/science/article/abs/pii/S0012821X04004571
    Uchida, T., Wang, Y. B., Rivers, M., et al., 2005. Stress and Strain Measurements of Polycrystalline Materials under Controlled Deformation at High Pressure Using Monochromatic Synchrotron Radiation. In: Chen, J. H., Wang, Y. B., Duffy, T. S., et al., eds., Advances in High-Pressure Techniques for Geophysical Applications. Elsevier, Amsterdam. 137–165
    Wang, Y. B., Dera, P. K., Hilairet, N., et al., 2009. High-Pressure Deformation of Single-Crystal Garnet in the D-DIA Using Quasi Laue Diffraction. EOS Trans. AGU, Fall Meet. Suppl. Abstract, 90(52): MR31B–1649 http://adsabs.harvard.edu/abs/2009AGUFMMR31B1654W
    Wang, Y. B., Durham, W. B., Getting, I. C., et al., 2003. The Deformation-DIA: A New Apparatus for High Temperature Triaxial Deformation to Pressures up to 15 GPa. Rev. Sci. Instrum. , 74(6): 3002–3011 doi: 10.1063/1.1570948
    Wang, Y. B., Hilairet, N., 2009. Rheology at High Pressure and High Temperature. High-Pressure Crystallography: Advanced New Armor Materials and Protection from Explosives. NATO, Erice, Sicily
    Wang, Y. B., Lesher, C., Fiquet, G., et al., 2010. In-Situ High-P, T, X-Ray Microtomographic Imaging during Large Deformation: A New Technique for Studying Mechanical Behavior of Multi-phase Composites. Geosphere, (Submitted)
    Wang, Y. B., Uchida, T., Westferro, F., et al., 2005. High-Pressure X-Ray Tomography Microscope: Synchrotron Computed Microtomography at High Pressure and Temperature. Review of Scientific Instruments, 76(7): 073709, doi: 10.1063/1.1979477.
    Weidner, D. J., Li, L., Davis, M., et al., 2004. Effect of Plasticity on Elastic Modulus Measurements. Geophysical Research Letters, 31(6), doi: 10.1029/2003GL019090
    Weidner, D. J., Vaughan, M. T., Wang, L. P., et al., 2010. Precise Stress Measurements with White Synchrotron X Rays. Rev. Sci. Instrum. , 81(1): 013903 doi: 10.1063/1.3263760
    Wenk, H. R., Ischia, G., Nishiyama, N., et al., 2005. Texture Development and Deformation Mechanisms in Ringwoodite. Physics of the Earth and Planetary Interiors, 152(3): 191–199 doi: 10.1016/j.pepi.2005.06.008
    Wenk, H. R., Lonardelli, I., Pehi, J., et al., 2004. In Situ Observation of Texture Development in Olivine, Ringwoodite, Magnesiowustite and Silicate Perovskite at High Pressure. Earth and Planetary Science Letters, 226(3–4): 507–519 https://www.sciencedirect.com/science/article/abs/pii/S0012821X04004674
    Wenk, H. R., Matthies, S., Donovan, J., et al., 1998. BEARTEX, a Windows-Based Program System for Quantitative Texture Analysis. J. Appl. Crystallogr. , 31: 262–269 doi: 10.1107/S002188989700811X
    Wenk, H. R., Matthies, S., Hemley, R. J., et al., 2000. The Plastic Deformation of Iron at Pressures of the Earth's Inner Core. Nature, 405(6790): 1044–1047 doi: 10.1038/35016558
    Xu, Y. S., Nishihara, Y., Karato, S. I., 2005. Development of a Rotational Drickamer Apparatus for Large-Strain Deformation Experiments at Deep Earth Conditions. In: Chen, J. H., Wang, Y. B., Duffy, T. S., et al., eds., Advances in High-Pressure Techniques for Geophysical Applications. Elsevier, Amsterdam. 167–182
    Yamazaki, D., Karato, S. I., 2001. High Pressure Rotational Deformation Apparatus to 15 GPa. Rev. Sci. Instrum. , 72(11): 4207–4211 doi: 10.1063/1.1412858
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views(911) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return