Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 21 Issue 5
Oct 2010
Turn off MathJax
Article Contents
Yusuke Usui, Taku Tsuchiya. Ab Initio Two-Phase Molecular Dynamics on the Melting Curve of SiO2. Journal of Earth Science, 2010, 21(5): 801-810. doi: 10.1007/s12583-010-0126-9
Citation: Yusuke Usui, Taku Tsuchiya. Ab Initio Two-Phase Molecular Dynamics on the Melting Curve of SiO2. Journal of Earth Science, 2010, 21(5): 801-810. doi: 10.1007/s12583-010-0126-9

Ab Initio Two-Phase Molecular Dynamics on the Melting Curve of SiO2

doi: 10.1007/s12583-010-0126-9
Funds:  This study was supported by the Japan Society for the Promotion of Science (No. 21740330) to Yusuke Usui, (No. 19740331) to Taku Tsuchiya, and a fellowship from the Global-COE program "Deep Earth Mineralogy" to Yusuke Usui
More Information
  • Corresponding author: Yusuke Usui, usui@sci.ehime-u.ac.jp
  • Received Date: 04 Apr 2010
  • Accepted Date: 20 May 2010
  • Publish Date: 01 Oct 2010
  • Ab initio two-phase molecular dynamics simulations were performed on silica at pressures of 20–160 GPa and temperatures of 2 500–6 000 K to examine its solid-liquid phase boundary. Results indicate a melting temperature (Tm) of 5 900 K at 135 GPa. This is 1 100 K higher than the temperature considered for the core-mantle boundary (CMB) of about 3 800 K. The calculated melting temperature is fairly consistent with classical MD (molecular dynamics) simulations. For liquid silica, the O-O coordination number is found to be 12 along the Tm and is almost unchanged with increasing pressure. The self-diffusion coefficients of O and Si atoms are determined to be 1.3×10−9–3.3×10−9 m2/s, and the viscosity is 0.02–0.03 Pa·s along the Tm. We find that these transport properties depend less on pressure in the wide range up of more than 135 GPa. The eutectic temperatures in the MgO-SiO2 systems were evaluated and found to be 700 K higher than the CMB temperature, though they would decrease considerably in more realistic mantle compositions.

     

  • loading
  • Alfè, D., 2005. Melting Curve of MgO from First-Principles Simulations. Phys. Rev. Lett. , 94(23): 235701 doi: 10.1103/PhysRevLett.94.235701
    Alfè, D., Kresse, G., Gillan, M. J., 2000. Structure and Dynamics of Liquid Iron under Earth's Core Conditions. Phys. Rev. B, 61(1): 132–142 doi: 10.1103/PhysRevB.61.132
    Allen, M. J., Tildesley, D. J., 1987. Computer Simulation of Liquids. Oxford University Press, Oxford
    Andrault, D., Fiquet, G., Guyot, F., et al., 1998. Pressure-Induced Landau-Type Transition in Stishovite. Science, 282(5389): 720–724 doi: 10.1126/science.282.5389.720
    Belonoshko, A. B., 1994. Molecular-Dynamics of MgSiO3 Perovskite at High-Pressures-Equation of State, Structure, and Melting Transition. Geochim. Cosmochim. Acta, 58(19): 4039–4047 doi: 10.1016/0016-7037(94)90265-8
    Belonoshko, A. B., 2001. Molecular Dynamics Simulations of Phase Transitions and Melting MgSiO3 with the Perovskite Structure-Comment. Am. Mineral. , 86(1–2): 193–194 doi: 10.2138/am-2001-0122/html
    Belonoshko, A. B., Arapan, S., Martonak, R., et al., 2010. MgO Phase Diagram from First Principles in a Wide Pressure-Temperature Range. Phys. Rev. B, 81(5): 054110 doi: 10.1103/PhysRevB.81.054110
    Belonoshko, A. B., Dubrovinsky, L. S., 1995. Molecular Dynamics of Stishovite Melting. Geochim. Cosmochim. Acta, 59(9): 1883–1889 doi: 10.1016/0016-7037(95)00071-7
    Belonoshko, A. B., Durbrovinsky, L. S., Dubrovinsky, N. A., 1996. A New High-Pressure Silica Phase Obtained by Molecular Dynamics. Am. Mineral. , 81(5–6): 785–788 doi: 10.2138/am-1996-5-632/html
    Belonoshko, A. B., Skorodumova, N. V., Rosengren, A., et al., 2005. High-Pressure Melting of MgSiO3. Phys. Rev. Lett. , 94(19): 195701 doi: 10.1103/PhysRevLett.94.195701
    Bowen, N. L., 1913. The Melting Phenomena of the Plagioclase Feldspars. Am. J. Sci. , 35(210): 577–599 https://ui.adsabs.harvard.edu/abs/1913AmJS...35..577B/abstract
    Cohen, R. E., 1992. First-Principles Predictions of Elasticity and Phase Transitions in High Pressure SiO2 and Geophysical Implications. In: Syono, Y., Manghnani, M. H., eds., High-Pressure Research: Applications to Earth and Planetary Sciences. American Geophysical Union, Washington D.C.; Terra Scientific, Tokyo. 425–432
    Dubrovinsky, L. S., Saxena, S. K., Lazor, P., et al., 1997. Experimental and Theoretical Identification of a New High-Pressure Phase of Silica. Nature, 388(6640): 362–365 doi: 10.1038/41066
    Hirose, K., Fei, Y. W., Ma, Y. Z., et al., 1999. The Fate of Subducted Basaltic Crust in the Earth's Lower Mantle. Nature, 396(6714): 53–56 https://www.nature.com/articles/16225
    Holland, K. G., Ahrens, T. J., 1997. Melting of (Mg, Fe)2SiO4 at the Core-Mantle Boundary of the Earth. Science, 275(5306): 1623–1625 doi: 10.1126/science.275.5306.1623
    Karki, B. B., Bhattarai, D., Stixrude, L., 2007. First-Principles Simulations of Liquid Silica: Structual and Dynamical Behavior at High Pressure. Phys. Rev. B. , 76(10): 104205 doi: 10.1103/PhysRevB.76.104205
    Karki, B. B., Stixrude, L. P., 2010. Viscosity of MgSiO3 Liquid at Earth's Mantle Conditions: Implications for an Early Magma Ocean. Science, 328(5979): 740–742 doi: 10.1126/science.1188327
    Karki, B. B., Warren, M. C., Stixrude, L., et al., 1997. Ab Initio Studies of High-Pressure Structural Transformations in Silica. Phys. Rev. B, 55(6): 3465–3471 doi: 10.1103/PhysRevB.55.3465
    Kato, T., 1986. Stability Relation of (Mg, Fe)SiO3 Garnets, Major Constituents in the Earth's Interior. Earth Planet. Sci. Lett. , 77(3–4): 399–408 https://www.sciencedirect.com/science/article/abs/pii/0012821X86901494
    Kawai, K., Tsuchiya, T., 2009. Temperature Profile in the Lowermost Mantle from Seismological and Mineral Physics Joint Modeling. Proc. Natl. Acad. Sci. USA, 106(52): 22119–22123 doi: 10.1073/pnas.0905920106
    Kingma, K. J., Cohen, R. E., Hemley, R. J., et al., 1995. Transformation of Stishovite to a Denser Phase at Lower-Mantle Pressures. Nature, 374(6519): 243–245 doi: 10.1038/374243a0
    Lacks, D. J., Rear, D. B., Van-Orman, J. A., 2007. Molecular Dynamics Investigation of Viscosity, Chemical Diffusivities and Partial Molar Volumes of Liquids along the MgO-SiO2 Join as Functions of Pressure. Geochem. Cosmochim. Acta, 71(5): 1312–1323 doi: 10.1016/j.gca.2006.11.030
    Luo, S. N., Cagin, T., Strachan, A., et al., 2005. Molecular Dynamics Modeling of Stishovite. Earth Planet. Sci. Let. , 202(1): 147–157 https://www.sciencedirect.com/science/article/abs/pii/S0012821X02007495
    McMahan, A. K., Ross, M., 1977. High-Temperature Electron-Band Calculations. Phys. Rev. B, 15: 718–725 https://ui.adsabs.harvard.edu/abs/1977PhRvB..15..718M/abstract
    Mermin, N. D., 1965. Thermal Properties of the Inhomogeneous Electron Gas. Phys. Rev. , 127: A1441–A1443 https://www.mendeley.com/catalogue/18c1f642-f328-3f27-8e04-b48248efe33c/
    Mozzi, R. L., Warren, B. E., 1969. The Structure of Vitreous Silica. J. Appl. Crystallogr. , 2: 164–172 doi: 10.1107/S0021889869006868
    Murakami, M., Hirose, K., Ono, S., et al., 2003. Stability of CaCl2-Type and Alpha-PbO2-Type SiO2 at High Pressure and Temperature Determined by In Situ X-Ray Measurements. Geophys. Res. Lett. , 30(5): doi: 10.1029/2002GL016722
    Ono, S., Hirose, K., Murakami, M., et al., 2002. Post-Stishovite Phase Boundary in SiO2 Determined by In Situ X-Ray Observations. Earth Planet. Sci. Lett. , 197(3–4): 187–192 https://www.sciencedirect.com/science/article/abs/pii/S0012821X0200479X
    Perdew, J. P., Zunger, A., 1981. Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Phys. Rev. B, 23(10): 5048–5079 doi: 10.1103/PhysRevB.23.5048
    Shen, G. Y., Lazor, P., 1995. Measurement of Melting Temperature of Some Minerals under Lower Mantle Pressures. J. Geophys. Res. , 100(B9): 17699–17713 doi: 10.1029/95JB01864
    Stishov, S. M., Popova, S. V., 1961. A New Dense Modification of Silica. Geokhimiya, 10: 837–839
    Stixrude, L., Karki, B., 2005. Structure and Freezing of MgSiO3 Liquid in Earth's Lower Mantle. Science, 310(5746): 297–299 doi: 10.1126/science.1116952
    Trave, A., Tangney, P., Scandolo, S., et al., 2002. Pressure-Induced Structural Changes in Liquid SiO2 from Ab Initio Simulations. Phys. Rev. Lett. , 89(24): 245504 doi: 10.1103/PhysRevLett.89.245504
    Troullier, N., Martins, J. L., 1991. Efficient Pseudopotentials for Plane-Wave Calculations. Phys. Rev. B, 43(3): 1993–2006 doi: 10.1103/PhysRevB.43.1993
    Tsuchiya, T., Caracas, R., Tsuchiya, J., 2004a. First Principles Determination of the Phase Boundaries of High-Pressure Polymorphs of Silica. Geophys. Res. Lett. , 31(11): L11610 doi: 10.1029/2004GL019649
    Tsuchiya, T., Tsuchiya, J., Umemoto, K., et al., 2004b. Phase Transition in MgSiO3 Perovskite in the Earth's Lower Mantle. Earth Planet. Sci. Lett. , 224(3–4): 241–248 https://www.sciencedirect.com/science/article/abs/pii/S0012821X04003383#:~:text=The%20high-pressure%20Pbnm%20-perovskite%20polymorph%20of%20MgSiO%203,this%20polymorph%20has%20been%20controversial%20for%20several%20years.
    Vanderbilt, D., 1990. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Phys. Rev. B, 41(11): 7892–7895 doi: 10.1103/PhysRevB.41.7892
    Waseda, Y., Toguri, J. M., 1977. The Structure of Molten Binary Silicate Systems CaO-SiO2 and MgO-SiO2. Metall. Trans. B, 8: 563–568 doi: 10.1007/BF02669331
    Williams, Q., Garnero, E. J., 1996. Seismic Evidence for Partial Melt at the Base of Earth's Mantle. Science, 273(5281): 1528–1530 doi: 10.1126/science.273.5281.1528
    Zhang, J. Z., Liebermann, R. C., Gasparik, T., et al., 1993. Melting and Subsolidus Relations of SiO2 at 9–14 GPa. J. Geophys. Res. , 98(B11): 19785–19793 doi: 10.1029/93JB02218
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views(362) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return