Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 21 Issue 5
Oct 2010
Turn off MathJax
Article Contents
Shenghua Mei, Ayako M Suzuki, David L Kohlstedt, Lili Xu. Experimental Investigation of the Creep Behavior of Garnet at High Temperatures and Pressures. Journal of Earth Science, 2010, 21(5): 532-540. doi: 10.1007/s12583-010-0127-8
Citation: Shenghua Mei, Ayako M Suzuki, David L Kohlstedt, Lili Xu. Experimental Investigation of the Creep Behavior of Garnet at High Temperatures and Pressures. Journal of Earth Science, 2010, 21(5): 532-540. doi: 10.1007/s12583-010-0127-8

Experimental Investigation of the Creep Behavior of Garnet at High Temperatures and Pressures

doi: 10.1007/s12583-010-0127-8
Funds:

the US Department of Energy, Office of Basic Energy Sciences DE-FG02-04ER15500

National Science Foundation NSF-EAR-0652852

More Information
  • Corresponding author: Shenghua Mei, meixx002@umn.edu
  • Received Date: 04 Jun 2010
  • Accepted Date: 20 Jul 2010
  • Publish Date: 01 Oct 2010
  • To provide constraints on the rheological properties of garnet, we have experimentally investigated the creep behavior of garnet at high pressures and temperatures using a deformation-DIA. Samples were cold-pressed from a garnet powder and deformed at constant displacement rates ranging from 1.1×10−5 to 2.6×10−5 s−1 at high temperatures (1 273–1 473 K) and high pressures (2.4–4.1 GPa). Differential stress and pressure were measured using X-ray diffraction techniques based on the elastic strain of various lattice planes as a function of orientation with respect to the applied stress field. The plastic strain of a deforming sample was monitored in-situ through a series of radiographs. Our results provide a measure of the dependence of creep rate of garnet on the temperature with an activation energy of ~280 kJ/mol and on pressure with an activation volume of ~10×10−6 m3/mol. The flow behavior of garnet quantified by this study provides the basis for modeling geodynamic processes occurring within subducted lithosphere.

     

  • loading
  • Anderson, O. L., Isaak, D. L., Oda, H., 1991. Thermoelastic Parameters for Six Minerals at High Temperature. J. Geophys. Res., 96(B11): 18037–18046 doi: 10.1029/91JB01579
    Ando, J. I., Fujino, K., Takeshita, T., 1993. Dislocation Microstructures in Naturally Deformed Silicate Garnets. Phys. Earth Planet. Inter., 80(3–4): 105–116 https://www.sciencedirect.com/science/article/abs/pii/0031920193900417
    Birch, F., 1947. Finite Elastic Strain of Cubic Crystals. Phys. Rev., 71: 809–824 doi: 10.1103/PhysRev.71.809
    Chen, S., Hiraga, T., Kohlstedt, D. L., 2006. Water Weakening of Clinopyroxene in the Dislocation Creep Regime. J. Geophys. Res., 111(B8), doi: 10.1029/2005JB003885
    Cordier, P., Liebermann, R. C., Raterron, P., et al., 1996. TEM Study of Silicate Garnet Deformed in a Multi-anvil High-Pressure Apparatus. Petrol. Geochem., 8(Suppl. ): 1, 14
    Durham, W. B., Mei, S. H., Kohlstedt, D. L., et al., 2009. New Measurements of Activation Volume in Olivine under Anhydrous Conditions. Phys. Earth Planet. Inter., 172(1–2): 67–73 http://www.sciencedirect.com/science/article/pii/S0031920108002033
    Fan, D. W., Zhou, W. G., Liu, C. Q., et al., 2009. The thermal Equation of State of (Fe0.86Mg0.07Mn0.07)3Al2Si3O12 Almandine. Mineralogical Magazine, 73: 95–102 doi: 10.1180/minmag.2009.073.1.95
    Gasparik, T., 2003. Phase Diagrams for Geoscientists, an Atlas of the Earth's Interior. Springer-Verlag, New York. 462
    Irifune, T., Ringwood, A. E., 1987. Phase Transformations in Primitive MORB and Pyrolite Compositions to 25 GPa and Some Geophysical Implications. In: Manghnani, M. H., Syono, Y., eds., High Pressure Research in Geophysics. American Geophysical Union, Washington D.C. . 231–242
    Irifune, T., Ringwood, A. E., 1993. Phase Transformations in Subducted Oceanic Crust and Buoyancy Relationships at Depths of 600–800 km in the Mantle. Earth Planet. Sci. Lett., 117(1–2): 101–110 http://www.sciencedirect.com/science/article/pii/0012821X9390120X
    Jin, Z. M., Zhang, J. F., Green, H. W., et al., 2001. Eclogite Rheology: Implications for Subducted Lithosphere. Geology, 29: 667–670 doi: 10.1130/0091-7613(2001)029<0667:ERIFSL>2.0.CO;2
    Karato, S. I., 2009. Theory of Lattice Strain in a Material Undergoing Plastic Deformation: Basic Formulation and Applications to a Cubic Crystal. Phys. Rev. B, 79: 214106 doi: 10.1103/PhysRevB.79.214106
    Karato, S. I., Wang, Z. C., Fujino, K., et al., 1993. High Creep Strength of Garnets and Its Bearing on the Dynamics and Chemical Evolution of the Mantle Transition Zone. Geodynamics Workshop in the Czech Republic, 5(6): 581
    Karato, S. I., Wang, Z. C., Liu, B. F., et al., 1995. Plastic Deformation of Garnets: Systematics and Implications for the Rheology of the Mantle Transition Zone. Earth Planet. Sci. Lett., 130(1–4): 13–30
    Katayama, I., Karato, S. I., 2008. Effects of Water and Iron Content on the Rheological Contrast between Garnet and Olivine. Phys. Earth Planet. Inter., 166(1–2): 57–66 https://www.sciencedirect.com/science/article/abs/pii/S0031920107002300
    Kleinschrodt, R. Duyster, J. P., 2002. HT-Deformation of Garnet: An EBSD Study on Granulites from Sri Lanka, India and the Ivrea Zone. J. Struct. Geol., 24(11): 1829–1844 doi: 10.1016/S0191-8141(01)00167-5
    Li, L., Weidner, D., Raterron, P., et al., 2004. Stress Measurements of Deforming Olivine at High Pressure. Phys. Earth Planet. Inter., 143–144: 357–367 https://www.sciencedirect.com/science/article/abs/pii/S0031920104000688
    Li, L., Long, H. B., Raterron, P., et al., 2006. Plastic Flow of Pyrope at Mantle Pressure and Temperature. Am. Mineral., 91: 517–525 doi: 10.2138/am.2006.1913
    Mainprice, D., Bascou, J., Cordier, P., et al., 2004. Crystal Preferred Orientation of Garnet: Comparison between Numerical Simulations and Electron Back-Scattered Diffraction (EBSD) Measurements in Naturally Deformed Eclogites. J. Struct. Geol., 26(11): 2089–2102 doi: 10.1016/j.jsg.2004.04.008
    Mei, S. H., Kohlstedt, D. L., Durham, W. B., et al., 2008. Experimental Investigation of the Creep Behavior of MgO at High Pressures. Phys. Earth Planet. Inter., 170(3–4): 170–175
    Mei, S. H., Suzuki, A. M., Kohlstedt, D. L., et al., 2010. Experimental Constraints on the Strength of the Lithospheric Mantle. J. Geophys. Res., doi: 10.1029/2009JB006873
    Merkel, S., 2006. X-Ray Diffraction Evaluation of Stress in High Pressure Deformation Experiments. J. Phys. Condens. Matter, 18(25): S949–S962 doi: 10.1088/0953-8984/18/25/S03
    Merkel, S., Yagi, T., 2006. Effect of Lattice Preferred Orientation on Lattice Strains in Polycrystalline Materials Deformed under High Pressure: Application to hcp-Co. J. Phys. Chem. Solid., 67(9–10): 2119–2131 http://www.sciencedirect.com/science/article/pii/S0022369706003064
    Murnaghan, F. D., 1937. Finite Deformations of an Elastic Solid. Am. J. Math., 59: 235–260 doi: 10.2307/2371405
    Paterson, M. S., Weaver, C. W., 1970. Deformation of Polycrystalline MgO under Pressure. J. Am. Ceram. Soc., 53: 463–471 doi: 10.1111/j.1151-2916.1970.tb12678.x
    Rabier, J., Garem, H., Veyssière, P., 1976. Transmission Electron Microscopy Determinations of Dislocation Burgers Vectors in Plastically Deformed Yttrium Iron Garnet Single Crystals. J. Appl. Phys., 47: 4755–4758 doi: 10.1063/1.322532
    Ringwood, A. E., 1975. Composition and Petrology of the Earth's Mantle. McGraw-Hill, New York. 618
    Ringwood, A. E., 1991. Phase Transformations and Their Bearing on the Constitution and Dynamics of the Mantle. Geochim. Cosmochim. Acta, 55(8): 2083–2110 doi: 10.1016/0016-7037(91)90090-R
    Singh, A. K., 1993. The Lattice Strain in a Specimen (Cubic System) Compressed Nonhydrostatically in an Opposed Anvil Device. J. Appl. Phys., 73(9): 4278–4286 doi: 10.1063/1.352809
    Singh, A. K., Balasingh, C., Mao, H. K., et al., 1998. Analysis of Lattice Strains Measured under Nonhydrostatic Pressure. J. Appl. Phys., 83(12): 7567–7575 doi: 10.1063/1.367872
    Smith, B. K., 1982. Plastic Deformation of Garnets: Mechanical Behavior and Associated Microstructures: [Dissertation]. Univ. California, Berkeley. 197
    Voegele, V., Cordier, P., Sautter, V., et al., 1998. Plastic Deformation of Silicate Garnets; Ⅱ, Deformation Microstructures in Natural Samples. Phys. Earth Planet. Inter., 108(4): 319–338 doi: 10.1016/S0031-9201(98)00111-3
    Wang, Y. B., Durham, W. B., Getting, I. C., et al., 2003. The Deformation-DIA: A New Apparatus for High Temperature Triaxial Deformation to Pressure up to 15 GPa. Rev. Sci. Inst., 74: 3002–3011 doi: 10.1063/1.1570948
    Wang, Z., Karato, S. I., Fujino, K., 1996. High Temperature Creep of Single Crystal Gadolinium Gallium Garnet. Phys. Chem. Min., 23(2): 73–80 doi: 10.1007/BF00202301
    Wang, Z. C., Ji, S. C., 1999. Deformation of Silicate Garnets: Brittle-Ductile Transition and Its Geological Implications. Canad. Mineral., 37: 525–541 http://www.mendeley.com/research/deformation-silicate-garnets-brittleductile-transition-geological-implications/
    Webb, S. L., 1989. The Elasticity of the Upper Mantle Orthosilicates Olivine and Garnet to 3 GPa. Phys. Chem. Minerals, 16(7): 684–692 doi: 10.1007/BF00223318
    Weidner, D. J., 1986. Mantle Model Based on Measured Physical Properties of Minerals. In: Saxena, S. K., ed., Chemistry and Physics of Terrestrial Planets. Springer, New York. 251–274
    Weidner, D. J., Wang, Y. B., Vaughan, M. T., 1994. Yield Strength at High Pressure and Temperature. Geophys. Res. Lett., 21(9): 753–756 doi: 10.1029/93GL03549
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views(881) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return