Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 21 Issue 6
Dec 2010
Turn off MathJax
Article Contents
Sarah Schönbrodt, Patrick Saumer, Thorsten Behrens, Christoph Seeber, Thomas Scholten. Assessing the Usle Crop and Management Factor C for Soil Erosion Modeling in a Large Mountainous Watershed in Central China. Journal of Earth Science, 2010, 21(6): 835-845. doi: 10.1007/s12583-010-0135-8
Citation: Sarah Schönbrodt, Patrick Saumer, Thorsten Behrens, Christoph Seeber, Thomas Scholten. Assessing the Usle Crop and Management Factor C for Soil Erosion Modeling in a Large Mountainous Watershed in Central China. Journal of Earth Science, 2010, 21(6): 835-845. doi: 10.1007/s12583-010-0135-8

Assessing the Usle Crop and Management Factor C for Soil Erosion Modeling in a Large Mountainous Watershed in Central China

doi: 10.1007/s12583-010-0135-8
Funds:

the Federal German Ministry of Education and Research (BMBF) 03 G 0669

German Jülich Research Centre FZJ

More Information
  • Due to the impoundment of the Yangtze River, the Three Gorges Dam in China fosters high land-use dynamics. Soil erosion is expected to increase dramatically. One of the key factors in soil erosion control is the vegetation cover and crop type. However, determining these factors adequately for the use in soil erosion modeling is very time-consuming especially for large mountainous areas, such as the Xiangxi (香溪) catchment in the Three Gorges area. In our study, the crop and management factor C was calculated using the fractional vegetation cover (CFVC) based on Landsat-TM images from 2005, 2006, and 2007 and on literature studies (CLIT). In 2007, the values of CFVC range between 0.001 and 0.98 in the Xiangxi catchment. The mean CFVC value is 0.05. CLIT values are distinctly higher, ranging from 0.08 to 0.46 with a mean value of 0.32 in the Xiangxi catchment. The mean potential soil loss amounts to 120.62 t/ha/a in the Xiangxi catchment when usingCLIT for modeling. Based on CFVC, the predicted mean soil loss in the Xiangxi catchment is 11.50 t/ha/a. Therefore, CLIT appears to be more reliable than the C factor based on the fractional vegetation cover.

     

  • loading
  • Behrens, T., Schmidt, K., Scholten, T., 2008. An Approach to Remove Uncertainties in Nominal Environmental Covariates and Soil Class Maps. In: Hartemink, A. E., McBratney, A., Mendoca-Santos, M. L., eds., Digital Soil Mapping with Limited Data. Springer-Verlag, New York. 213–224
    Boettinger, J. L., Ramsey, R. D., Bodily, J. M., et al., 2008. Landsat Spectral Data for Digital Soil Mapping. In: Hartemink, A. E., McBratney, A., Mendoca-Santos, M. L., eds., Digital Soil Mapping with Limited Data. Springer-Verlag, New York. 193–202
    Brady, N. C., Weil, R. R., 2007. The Nature and Properties of Soil. 14th Edition. Prentice Hall, New Jersey. 980
    Cai, Q. G., Wang, H., Curtin, D., et al., 2005. Evaluation of the EUROSEM Model with Single Event Data on Steeplands in the Three Gorges Reservoir Areas, China. Catena, 59(1): 19–33 doi: 10.1016/j.catena.2004.05.008
    de Asis, A. M., Omasa, K., 2007. Estimation of Vegetation Parameter for Modeling Soil Erosion Using Linear Spectral Mixture Analysis of Landsat ETM Data. ISPRS Journal of Photogrammetry and Remote Sensing, 62(4): 309–324 doi: 10.1016/j.isprsjprs.2007.05.013
    de Jong, S. M., 1994. Derivation of Vegetative Variables from a Landsat TM Image for Modelling Soil Erosion. Earth Surface Processes and Landforms, 19(2): 165–178 doi: 10.1002/esp.3290190207
    Eastman, J. R., Fulk, M., 1993. Long Sequence Time-Series Map Evaluation Using Standardized Principal Components. Photogrammetric Engineering and Remote Sensing, 59(6): 991–996
    Erencin, Z., 2000. C-Factor Mapping Using Remote Sensing and GIS-A Case Study of LOM Sak/Lom Kao, Thailand: [Dissertation]. ITC, Holland
    He, K. Q., Li, X. R., Yan, X. Q., et al., 2008. The Landslides in the Three Gorges Reservoir Region, China and the Effects of Water Storage and Rain on Their Stability. Environmental Geology, 55(1): 55–63 doi: 10.1007/s00254-007-0964-7
    Huang, Z. Q., Zhou, W. C., Zhou, J. M., et al., 2006. Land Use of the Three Gorges Reservoir Area and the Effect on Its Landscape Pattern in the Recent 50 Years. Wuhan University Journal of Natural Sciences, 11(4): 910–914 doi: 10.1007/BF02830187
    Jensen, J. R., 2000. Remote Sensing of the Environment: An Earth Resource Perspective. Prentice Hall, New Jersey. 544
    Lillesand, T. M., Kiefer, R. W., Chipman, J. W., 2007. Remote Sensing and Image Interpretation. 6th Edition. John Wiley and Sons, New York. 768
    Liu, Y., Luo, Z., 2005. A Study on Estimation of the Amount of Soil Erosion in Small Watershed Based on GIS: A Case Study in the Three Gorge Area of China. International Geoscience and Remote Sensing Symposium Proceedings, 3: 1859–1863
    McDonald, B., Webber, M., Duan, Y. F., 2008. Involuntary Resettlement as an Opportunity for Development: The Case of Urban Resettlers of the Three Gorges Project, China. Journal of Refugee Studies, 21(1): 82–102 doi: 10.1093/jrs/fem052
    Meng, Q. H., Fu, B. J., Yang, L. Z., 2001. Effects of Land Use on Soil Erosion and Nutrient Loss in the Three Gorges Reservoir Area, China. Soil Use and Management, 17(4): 288–291 doi: 10.1079/SUM200170
    Neubert, M., Meinel, G., 2005. Atmosphärische und Topographische Korrektur von IKONOS-Daten mit ATCOR. In: Strobl, J., Blaschke, T., Griesebner, G., eds., Angewandte Geoinformatik 2005. Beiträge zum 17, AGIT-Symposium, Salzburg, Heidelberg, Wichmann. 503–512 (in German)
    Pimentel, D., 2006. Soil Erosion: A Food and Environmental Threat. Environment Development and Sustainability, 8(1): 119–137 doi: 10.1007/s10668-005-1262-8
    Renard, K. G., Foster, G. R., Weesies, G. A., et al., 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). USDA, Agriculture Handbook, Washington, DC. 703, 384
    Richards, J. A., Jia, X., 2006. Remote Sensing Digital Image Analysis: An Introduction. 4th Edition. Springer-Verlag, Berlin. 439
    Richter, R., 2010. Atmospheric/Topographic Correction for Satellite Imagery (ATCOR 2/3 User Guide, Version 7.1, January 2008). 165. http://atcor.ch/pdf/atcor3_manual.pdf
    Rouse, J. W., Haas, R. W., Schell, J. A., et al., 1974. Monitoring the Vernal Advancement and Retrogradation (Greenwave Effect) of Natural Vegetation. NASA/GSFCT Type Ⅲ Final Report, Greenbelt, MD, USA
    Seeber, C., Hartmann, H., Xiang, W., et al., 2010. Land Use Change and Causes in the Xiangxi Catchment, Three Gorges Area Derived from Multispectral Data. Journal of Earth Science, 21(6): 846–855 doi: 10.1007/s12583-010-0136-7
    Shi, Z. H., Cai, C. F., Ding, S. W., et al., 2004. Soil Conservation Planning at the Small Watershed Level Using RUSLE with GIS: A Case Study in the Three Gorges Area of China. Catena, 55(1): 33–48 doi: 10.1016/S0341-8162(03)00088-2
    Shi, X. Z., Yu, D. S., Xu, S. X., et al., 2010. Cross-Reference for Relating Genetic Soil Classification of China with WRB at Different Scales. Geoderma, 155(3–4): 344–350
    Schönbrodt, S., Ehret, D., Seeber, C., et al. . Geo-risks in the Highly Dynamic Three Gorges Reservoir Ecosystem: Interactions of Soil Erosion, Mass Movements, and Land Use. Earth Surface Processes and Landforms (Submitted)
    Sun, X. X., Zhang, J. X., Liu, Z. J., 2008. Vegetation Cover Annual Changes Based on MODIS/TERRA NDVI in the Three Gorges Reservoir Area. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(Part B7): 1397–1400
    Suriyaprasit, M., Shrestha, D. P., 2008. Deriving Land Use and Canopy Cover Factor from Remote Sensing and Field Data in Inaccessible Mountainous Terrain for Use in Soil Erosion Modelling. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(Part B7): 1747–1750
    Tan, Y., Bryan, B., Hugo, G., 2005. Development, Land-Use Change and Rural Resettlement Capacity: A Case Study of the Three Gorges Project, China. Australian Geographer, 36(2): 201–220 doi: 10.1080/00049180500153484
    Tarboton, D. G., 1997. A New Method for the Determination of Flow Directions and Upslope Areas in Grid Digital Elevation Models. Water Resources Research, 33(2): 309–319 doi: 10.1029/96WR03137
    Wang, G., Wente, S., Gertner, G. Z., et al., 2002. Improvement in Mapping Vegetation Cover Factor for the Universal Soil Loss Equation by Geostatistical Methods with Landsat Thematic Mapper Images. International Journal of Remote Sensing, 23(18): 3649–3667 doi: 10.1080/01431160110114538
    Wischmeier, W. H., Smith, D. D., 1965. Predicting Rainfall-Erosion Losses from Cropland East of the Rocky Mountains-Guide for Selection of Practices for Soil and Water Conservation. USDA, Agriculture Handbook, Washington DC. 282
    Wischmeier, W. H., Smith, D. D., 1978. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning. USDA, Agriculture Handbook, Washington DC. 537
    Xu, Y. Q., Peng, J., Shao, X. M., 2009. Assessment of Soil Erosion Using RUSLE and GIS: A Case Study of the Maotiao River Watershed, Guizhou Province, China. Environmental Geology, 56(8): 1643–1652 doi: 10.1007/s00254-008-1261-9
    Yang, Y. S., Shi, D. M., 1994. Study on Soil Erosion in the Three Gorges Area of the Changgjiang River. Southeast Univ. Press, Nanjing (in Chinese)
    Zhou, P., 2008. Landscape-Scale Soil Erosion Modeling and Ecological Restoration for a Mountainous Watershed in Sichuan, China: [Dissertation]. Department of Forest Ecology, University of Helsinki, Helsink
    Zhou, P., Luukkanen, O., Tokola, T., et al., 2008. Effect of Vegetation Cover on Soil Erosion in a Mountainous Watershed. Catena, 75(3): 319–325 doi: 10.1016/j.catena.2008.07.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views(889) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return