Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 21 Issue 6
Dec 2010
Turn off MathJax
Article Contents
Guodong Zheng, Shouyun Liang, Yuhua Lang, Xiangxian Ma, Mingliang Liang, Wei Xiang. Pyrite in Sliding Mud: A Potential Indicator of Landslide Development. Journal of Earth Science, 2010, 21(6): 954-960. doi: 10.1007/s12583-010-0148-3
Citation: Guodong Zheng, Shouyun Liang, Yuhua Lang, Xiangxian Ma, Mingliang Liang, Wei Xiang. Pyrite in Sliding Mud: A Potential Indicator of Landslide Development. Journal of Earth Science, 2010, 21(6): 954-960. doi: 10.1007/s12583-010-0148-3

Pyrite in Sliding Mud: A Potential Indicator of Landslide Development

doi: 10.1007/s12583-010-0148-3
Funds:

the Three Gorges Research Center for Geo-hazard, Ministry of Education, China University of Geosciences TGRC201002

Chinese Academy of Sciences as 100-Tallent Program in 2007–2011 

More Information
  • Corresponding author: Guodong Zheng, gdzhuk@hotmail.com
  • Received Date: 13 Jul 2010
  • Accepted Date: 10 Sep 2010
  • Publish Date: 01 Dec 2010
  • A new principle of geochemical conditions within a landslide slip zone is presented based on the concept of a self-sealing closed system for which newly formed pyrite should be considered as a potential indicator. Once slip zones occur, a series of water-rock interactions may take place, particularly, a change in redox conditions simultaneously with progression of the landslide. This change induces weathering of the debris and bed rocks, and leads to accumulation of newly formed sliding mud within the slip zone. Pyrite formation along with clay mineral accumulation occurs under a weak alkaline-strong reducing environment along with landslide development. Thus, formation of neogenetic pyrite, iron speciation, and clay mineralization are all important factors for a better understanding of landslide progression.

     

  • loading
  • Berner, R. A., 1970. Sedimentary Pyrite Formation. American Journal of Sciences, 268(1): 1-23
    Berner, R. A., 1984. Sedimentary Pyrite Formation: An Update. Geochimica et Cosmochimica Acta, 48(4): 605-615 doi: 10.1016/0016-7037(84)90089-9
    Chigira, M., Oyama, T., 2000. Mechanism and Effect of Chemical Weathering of Sedimentary Rocks. Engineering Geology, 55(1-2): 3-14 doi: 10.1016/S0013-7952(99)00102-7
    Cripps, J. C., Edwards, R. L., 1997. Some Geotechnical Problems Associated with Pyrite Bearing Mudrocks. In: Hawkins, A. B., ed., Ground Chemistry Implications for Construction. A. A. Balkema Oublishers, Rotterdam, Netherlands. 77-87
    Donald, R., Southam, G., 1999. Low Temperature Anaerobic Bacterial Diagenesis of Ferrous Monosulfide to Pyrite. Geochimca et Cosmochimica Acta, 63(13-14): 2019-2023 doi: 10.1016/S0016-7037(99)00140-4
    Kusky, T. M., 2008. Landslides: Mass Wasting, Soil, and Mineral Hazards. Facts on File, New York. 128
    Lin, H. J., Chen, L. H., 1983. Significance of Authigenic Microspheroid Pyrite by Scanning Electron Microscope. Science in China (Ser. B), XXVI(9): 971-980
    Ohfuji, H., Akai, J., 2002. Icosahedral Domain Structure of Framboidal Pyrite. American Mineralogist, 87(1): 176-180 doi: 10.2138/am-2002-0119
    Shin, J., 1999. Landslide Researcher's Retrospection. Landslide, 36(1): 1-2 (in Japanese) doi: 10.3313/jls1964.36.1_1
    Steward, H. E., Cripps, J. C., 1983. Some Engineering Implications of Chemical Weathering of Pyritic Shale. Quarterly Journal of Engineering Geology and Hydrogeology, 16(4): 281-289 doi: 10.1144/GSL.QJEG.1983.16.04.05
    The Japan Landslide Society (JLS), 1996. Landslide in Japan. 5th ed. . National Conference of Landslide Control, Tokyo, Japan. 57 (in Japanese)
    Toyama Prefecture, 1992. Geological Map of Toyama Prefecture (1: 100 000) and Its Explanation. 201 (in Japanese)
    Wilkin, R. T., Barnes, H. L., 1996. Pyrite Formation by Reactions of Iron Monosulfides with Dissolved Inorganic and Organic Sulfur Species. Geochimica et Cosmochimica Acta, 60(21): 4167-4179 doi: 10.1016/S0016-7037(97)81466-4
    Wilkin, R. T., Barnes, H. L., 1997. Pyrite Formation in an Anoxic Estuarine Basin. American Journal of Science, 297(6): 620-650 doi: 10.2475/ajs.297.6.620
    Xu, S., Zheng, G. D., Lang, Y. G., 2003. Radiocarbon Dating and Mössbauer Spectroscopic Study of the Mukaiyama Landslide, Japan. Journal of Radioanalytical and Nuclear Chemistry, 258(2): 307-314 doi: 10.1023/A:1026237805136
    Yang, P., Sokobiki, H., Kitagawa, R., et al., 1995. Mineralogical and Chemical Implications of Tertiary Mudstone Landslide. Proc. XX IUFRO World Congress. Tampere, Finland. 113-125
    Zheng, G. D., Lang, Y. H., Matsuo, M., et al., 2002a. Mössbauer Spectroscopic Characterization of Iron Species in Sliding Mud. Hyperfine Interactions, 141(1-4): 361-367
    Zheng, G. D., Lang, Y. H., Takano, B., et al., 2002b. Iron Speciation of Sliding Mud in Toyama Prefecture, Japan. Journal of Asian Earth Sciences, 20(8): 955-963 doi: 10.1016/S1367-9120(01)00088-8
    Zheng, G. D., Xu, S., Lang, Y. H., et al., 2006. Pyrite in Sliding Mud of the Nakataura landslide in Toyama Prefecture, Japan. Geochimica, 35(2): 201-210 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(674) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return