Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 21 Issue 6
Dec 2010
Turn off MathJax
Article Contents
Lauer Katja, Albrecht Christian, Christina SALAT, Felix-Henningsen Peter. Complex Effective Relative Permittivity of Soil Samples from the Taunus Region (Germany). Journal of Earth Science, 2010, 21(6): 961-967. doi: 10.1007/s12583-010-0149-2
Citation: Lauer Katja, Albrecht Christian, Christina SALAT, Felix-Henningsen Peter. Complex Effective Relative Permittivity of Soil Samples from the Taunus Region (Germany). Journal of Earth Science, 2010, 21(6): 961-967. doi: 10.1007/s12583-010-0149-2

Complex Effective Relative Permittivity of Soil Samples from the Taunus Region (Germany)

doi: 10.1007/s12583-010-0149-2
Funds:

the German Research Foundation (DFG) SFB 299

More Information
  • The most important parameter affecting ground-penetrating radar (GPR) measurements is the complex effective relative permittivity εr, eff* because it controls the propagation velocity and the reflection of GPR pulses. Knowing εr, eff* of soils passed through by electromagnetic waves increases accuracy in soil thickness and interface identification. Complex effective relative permittivity εr, eff* =εr, eff'jε"r, eff* of 25 soil samples with textures ranging from loamy sand to silty clay was measured using the two-electrode parallelplate method. The measurements were conducted at defined water contents for frequencies from 1 MHz to 3 GHz. The results confirm the frequency dependence of εr, eff* and show that the dielectric behavior of soil-water mixtures is a function of water content. Applying the experimental data of this study with predictions based on the empirical model by Topp et al. (1980), we find that Topp et al.'s curve tends to underestimate the real part of εr, eff* measured. Along with frequency and water content, soil texture and organic matter affect soil permittivity. Moreover, the real part of εr, eff* increases at higher dry bulk densities. Output from our calibration model enables us to predict εr, eff* for the soil samples which were tested under the actual in situ soil water content. This results in high accuracy of soil thickness prediction.

     

  • loading
  • Blume, H. P., Brümmer, G. W., Schwertmann, U., et al., 2010. Scheffer/Schachtschabel, Lehrbuch der Bodenkunde. Spektrum Akademischer Verlag, Heidelberg. 569 (in German)
    Daniels, D. J., 2004. Ground Penetrating Radar. 2nd Edition. The Institution of Electrical Engineers, London. 726
    DIN ISO 11265, 1997. Bodenbeschaffenheit-Bestimmung der Spezifischen Elektrischen Leitfähigkeit. Deutsches Institut für Normung e. V., Berlin (in German)
    Gerber, R., 2009. Erfassung der Mächtigkeit und Verbreitung Periglaziärer Lagen im Lahn-Dill-Bergland (Rheinisches Schiefergebirge): [Dissertation]. University of Giessen, Giessen (in German)
    Hallikainen, M. T., Ulaby, F. T., Dobson, M. C., et al., 1985. Microwave Dielectric Behavior of Wet Soil, Part Ⅰ: Empirical Models and Experimental Observations. IEEE Transactions on Geoscience and Remote Sensing, 23(1): 25-34
    Hoekstra, P., Delaney, A., 1974. Dielectric Properties of Soils at UHF and Microwave Frequencies. Journal of Geophysical Research, 79(11): 1699-1708 doi: 10.1029/JB079i011p01699
    Huisman, J. A., Hubbard, S. S., Redman, J. D., et al., 2003. Measuring Soil Water Content with Ground Penetrating Radar: A Review. Vadose Zone Journal, 2(4): 476-491
    Inman, D. J., Freeland, R. S., Yoder, R. E., et al., 2001. Evaluating GPR and EMI for Morphological Studies of Loessial Soils. Soil Science, 166(9): 622-630 doi: 10.1097/00010694-200109000-00006
    Knoll, M. D., 1996. A Petrophysical Basis for Ground Penetrating Radar and very Early Time Electromagnetics: Electrical Properties of Sand-Clay Mixtures: [Dissertaion]. University of British Columbia, Vancouver
    Kuntze, H., 1994. Wasserbindung. In: Kuntze, H., Roeschmann, G., Schwerdtfeger, G., eds., Bodenkunde. Eugen Ulmer Verlag, Stuttgart. 162-168 (in German)
    Peplinski, N. R., Ulaby, F. T., Dobson, M. C., 1995. Dielectric Properties of Soils in the 0.3-1.3-GHz Range. IEEE Transactions on Geoscience and Remote Sensing, 33(3): 803-807 doi: 10.1109/36.387598
    Saarenketo, T., 1998. Electrical Properties of Water in Clay and Silty Soils. Journal of Applied Geophysics, 40(1-3): 73-88 doi: 10.1016/S0926-9851(98)00017-2
    Salat, C., Junge, A., 2010. Dielectric Permittivity of Fine-Grained Fractions of Soil Samples from Eastern Spain at 200 MHz. Geophysics, 75(1): J1-J9 doi: 10.1190/1.3294859
    Schlichting, E., Blume, H. P., Stahr, K., 1995. Bodenkundliches Praktikum. Blackwell-Wissenschaftsverlag, Berlin. 295 (in German)
    Shang, J. Q., Scholte, J. W., Rowe, R. K., 2000. Multiple Linear Regression of Complex Permittivity of a Till at Frequency Range from 200 MHz to 400 MHz. Subsurface Sensing Technologies and Applications, 1(3): 337-35 doi: 10.1023/A:1010199809583
    Topp, G. C., Davis, J. L., Annan, A. P., 1980. Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines. Water Resources Research, 16(3): 574-582 doi: 10.1029/WR016i003p00574
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(756) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return