Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 21 Issue S1
Nov 2021
Turn off MathJax
Article Contents
David J. BOTTJER. The Cambrian Substrate Revolution and Early Evolution of the Phyla. Journal of Earth Science, 2010, 21(S1): 21-24. doi: 10.1007/s12583-010-0160-7
Citation: David J. BOTTJER. The Cambrian Substrate Revolution and Early Evolution of the Phyla. Journal of Earth Science, 2010, 21(S1): 21-24. doi: 10.1007/s12583-010-0160-7

The Cambrian Substrate Revolution and Early Evolution of the Phyla

doi: 10.1007/s12583-010-0160-7
More Information
  • Corresponding author: David J. BOTTJER, dbottjer@usc.edu
  • Received Date: 20 Dec 2009
  • Accepted Date: 20 Feb 2010
  • Publish Date: 01 Jun 2010
  • Evidence from Precambrian carbonate and siliciclastic sedimentary structures indicates that in marine settings before the Cambrian conditions of seafloor environments were largely controlled by microbes and the mats which they form. During the Ediacaran-Cambrian transition, a vertical component to marine bioturbation evolved, as well as overall increased seafloor bioturbation. The “Cambrian substrate revolution (CSR)” encompasses the evolutionary and ecological effects that occurred due to these substrate changes. The continued evolution of bioturbating organisms caused the development of a significant variety of new microenvironments, which led to the formation of new ecospace and evolutionary opportunities for other benthic organisms. Numerous studies have evaluated the “weird” morphology of early seafloor animals and how they adapted to an increasingly bioturbated substrate. Many early animals adapted to seafloors with strong microbial mat development are stem groups of the phyla we recognize today, and thus have morphological features absent in modern representatives. Fossils of crown groups of modern phyla first began to appear in the Cambrian and subsequently dominated Phanerozoic bioturbated seafloor environments. The CSR is thus a primary component of the evolution of stem and crown groups of the phyla during the Cambrian explosion.

     

  • loading
  • Bottjer, D. J., Davidson, E. H., Peterson, K. J., et al., 2006. Paleogenomics of Echinoderms. Science, 314: 956–960 doi: 10.1126/science.1132310
    Bottjer, D. J., Hagadorn, J. W., Dornbos, S. Q., 2000. The Cambrian Substrate Revolution. GSA Today, 10: 1–7
    Brysse, K., 2008. From Weird Wonders to Stem Lineages: The Second Reclassification of the Burgess Shale Fauna. Stud. Hist. Phil. Biol. & Biomed. Sci., 39: 298–313
    Chen, J. Y., Bottjer, D. J., Li, G., et al., 2009. Complex Embryos Displaying Bilaterian Characters from Precambrian Doushantuo Phosphate Deposits, Weng’an, Guizhou, China. Proceedings of the National Academy of Sciences, 106: 19056–19060 doi: 10.1073/pnas.0904805106
    Dornbos, S. Q., 2006. Evolutionary Paleoecology of Early Epifaunal Echinoderms: Response to Increasing Bioturbation Levels during the Cambrian Radiation. Palaeogeography, Palaeoclimatology, Palaeoecology, 237: 225–239 doi: 10.1016/j.palaeo.2005.11.021
    Dornbos, S. Q., Bottjer, D. J., 2000. Evolutionary Paleoecology of the Earliest Echinoderms: Helicoplacoids and the Cambrian Substrate Revolution. Geology, 28: 839–842 doi: 10.1130/0091-7613(2000)28<839:EPOTEE>2.0.CO;2
    Gehling, J. G., 1999. Microbial Mats in Terminal Proterozoic Siliciclastics: Ediacaran Death Masks.Palaios, 14: 40–57 doi: 10.2307/3515360
    Hagadorn, J. W., Bottjer, D. J., 1997. Wrinkle Structures: Microbially Mediated Sedimentary Structures Common in Subtidal Siliciclastic Settings at the Proterozoic-Phanerozoic Transition. Geology, 25: 1047–1050 doi: 10.1130/0091-7613(1997)025<1047:WSMMSS>2.3.CO;2
    Hagadorn, J. W., Bottjer, D. J., 1999. Restriction of a Late Neoproterozoic Biotope: Suspect-Microbial Structures and Trace Fossils at the Vendian-Cambrian Transition. Palaios, 14: 73–85 doi: 10.2307/3515362
    Love, G. D., Grosjean, E., Stalvies, C., et al., 2009. Fossil Steroids Record the Appearance of Demospongiae during the Cryogenian Period. Nature, 457: 718–721 doi: 10.1038/nature07673
    Marshall, C. R., 2006. Explaining the Cambrian “Explosion” of Animals. Annual Reviews of Earth and Planetary Science, 34: 355–384 doi: 10.1146/annurev.earth.33.031504.103001
    McIlroy, D., Logan, G. A., 1999. The Impact of Bioturbation on Infaunal Ecology and Evolution during the Proterozoic-Cambrian Transition. Palaios, 14: 58–72 doi: 10.2307/3515361
    Peterson, K. J., Cotton, J. A., Gehling, J. G., et al., 2008. The Ediacaran Emergence of Bilaterians: Congruence between the Genetic and the Geological Fossil Records. Philosophical Transactions of the Royal Society B, 363: 1435–1443 doi: 10.1098/rstb.2007.2233
    Seilacher, A., 1999. Biomat-Related Lifestyles in the Precambrian. Palaios, 14: 86–93 doi: 10.2307/3515363
    Seilacher, A., Pflüger, F., 1994. From Biomats to Benthic Agriculture: A Biohistoric Revolution. In: Krumbein, W. E., Paterson, D. M., Stal, L. J., eds., Biostabilization of Sediments. Bibliotheks Und Infomationssystem Der Carl Von Ossietzky Universität, Oldenburg, Germany. 97–105
    Valentine, J. W., 2004. On the Origin of Phyla. University of Chicago Press, 614
    Xiao, S., Laflamme, M., 2008. On the Eve of Animal Radiation: Phylogeny, Ecology and Evolution of the Ediacara Biota. Trends in Ecology and Evolution, 24: 31–40
    Zhang, X. G., Siveter, D. J., Waloszek, D., et al., 2007. An Epipodite-Bearing Crown-Group Crustacean from the Lower Cambrian. Nature, 449: 595–598 doi: 10.1038/nature06138
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(51) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return