Bottjer, D. J., Davidson, E. H., Peterson, K. J., et al., 2006. Paleogenomics of Echinoderms. Science, 314: 956–960 doi: 10.1126/science.1132310 |
Bottjer, D. J., Hagadorn, J. W., Dornbos, S. Q., 2000. The Cambrian Substrate Revolution. GSA Today, 10: 1–7 |
Brysse, K., 2008. From Weird Wonders to Stem Lineages: The Second Reclassification of the Burgess Shale Fauna. Stud. Hist. Phil. Biol. & Biomed. Sci., 39: 298–313 |
Chen, J. Y., Bottjer, D. J., Li, G., et al., 2009. Complex Embryos Displaying Bilaterian Characters from Precambrian Doushantuo Phosphate Deposits, Weng’an, Guizhou, China. Proceedings of the National Academy of Sciences, 106: 19056–19060 doi: 10.1073/pnas.0904805106 |
Dornbos, S. Q., 2006. Evolutionary Paleoecology of Early Epifaunal Echinoderms: Response to Increasing Bioturbation Levels during the Cambrian Radiation. Palaeogeography, Palaeoclimatology, Palaeoecology, 237: 225–239 doi: 10.1016/j.palaeo.2005.11.021 |
Dornbos, S. Q., Bottjer, D. J., 2000. Evolutionary Paleoecology of the Earliest Echinoderms: Helicoplacoids and the Cambrian Substrate Revolution. Geology, 28: 839–842 doi: 10.1130/0091-7613(2000)28<839:EPOTEE>2.0.CO;2 |
Gehling, J. G., 1999. Microbial Mats in Terminal Proterozoic Siliciclastics: Ediacaran Death Masks.Palaios, 14: 40–57 doi: 10.2307/3515360 |
Hagadorn, J. W., Bottjer, D. J., 1997. Wrinkle Structures: Microbially Mediated Sedimentary Structures Common in Subtidal Siliciclastic Settings at the Proterozoic-Phanerozoic Transition. Geology, 25: 1047–1050 doi: 10.1130/0091-7613(1997)025<1047:WSMMSS>2.3.CO;2 |
Hagadorn, J. W., Bottjer, D. J., 1999. Restriction of a Late Neoproterozoic Biotope: Suspect-Microbial Structures and Trace Fossils at the Vendian-Cambrian Transition. Palaios, 14: 73–85 doi: 10.2307/3515362 |
Love, G. D., Grosjean, E., Stalvies, C., et al., 2009. Fossil Steroids Record the Appearance of Demospongiae during the Cryogenian Period. Nature, 457: 718–721 doi: 10.1038/nature07673 |
Marshall, C. R., 2006. Explaining the Cambrian “Explosion” of Animals. Annual Reviews of Earth and Planetary Science, 34: 355–384 doi: 10.1146/annurev.earth.33.031504.103001 |
McIlroy, D., Logan, G. A., 1999. The Impact of Bioturbation on Infaunal Ecology and Evolution during the Proterozoic-Cambrian Transition. Palaios, 14: 58–72 doi: 10.2307/3515361 |
Peterson, K. J., Cotton, J. A., Gehling, J. G., et al., 2008. The Ediacaran Emergence of Bilaterians: Congruence between the Genetic and the Geological Fossil Records. Philosophical Transactions of the Royal Society B, 363: 1435–1443 doi: 10.1098/rstb.2007.2233 |
Seilacher, A., 1999. Biomat-Related Lifestyles in the Precambrian. Palaios, 14: 86–93 doi: 10.2307/3515363 |
Seilacher, A., Pflüger, F., 1994. From Biomats to Benthic Agriculture: A Biohistoric Revolution. In: Krumbein, W. E., Paterson, D. M., Stal, L. J., eds., Biostabilization of Sediments. Bibliotheks Und Infomationssystem Der Carl Von Ossietzky Universität, Oldenburg, Germany. 97–105 |
Valentine, J. W., 2004. On the Origin of Phyla. University of Chicago Press, 614 |
Xiao, S., Laflamme, M., 2008. On the Eve of Animal Radiation: Phylogeny, Ecology and Evolution of the Ediacara Biota. Trends in Ecology and Evolution, 24: 31–40 |
Zhang, X. G., Siveter, D. J., Waloszek, D., et al., 2007. An Epipodite-Bearing Crown-Group Crustacean from the Lower Cambrian. Nature, 449: 595–598 doi: 10.1038/nature06138 |