Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 22 Issue 1
Feb 2011
Turn off MathJax
Article Contents
Xiaosong YANG, Jianye CHEN, Yu YANG, Guoling ZHANG. Experimental studies on seismic anisotropy enhanced by alignment of melt: Implication for the origin of abnormal anisotropy in Tibetan crust. Journal of Earth Science, 2011, 22(1): 32-39. doi: 10.1007/s12583-011-0155-z
Citation: Xiaosong YANG, Jianye CHEN, Yu YANG, Guoling ZHANG. Experimental studies on seismic anisotropy enhanced by alignment of melt: Implication for the origin of abnormal anisotropy in Tibetan crust. Journal of Earth Science, 2011, 22(1): 32-39. doi: 10.1007/s12583-011-0155-z

Experimental studies on seismic anisotropy enhanced by alignment of melt: Implication for the origin of abnormal anisotropy in Tibetan crust

doi: 10.1007/s12583-011-0155-z
Funds:

the National Natural Science Foundation of China 40972139

the Foundation of Earthquake Sciences of China Earthquake Administration 2008419012

the Key Basic Research and Development Program of China 2004CB418405

More Information
  • Corresponding author: Xiaosong YANG, xsyang@ies.ac.cn
  • Received Date: 15 Aug 2010
  • Accepted Date: 28 Oct 2010
  • Publish Date: 01 Feb 2011
  • It is commonly agreed that seismic anisotropy, most likely caused by lattice preferred orientation (LPO) of major minerals, is a very important indicator of intracrustal deformation. Ultrasonic velocity measurements on the rocks from higher Himalayan crystallines (HHC) and Honghe (红河) strike-slip fault zone in Southwest China showed an average anisotropic magnitude of about 5%. However, a series of seismic measurements conducted in Tibet indicated marked anisotropy with a magnitude ranging from 8% to 18% within middle to lower crust. What causes the anomalously strong anisotropy within Tibetan crust? Parts of HHC rocks, to some extent, had undergone granulitic-grade metamorphism, the temperature and pressure of which were in excess of their solidus. Additionally, oriented leucocratic portions, which are accepted to be products crystallized from localized melt bands and aligned melt pocket (AMP), are present in HHC pervasively. If melt is oriented, it is expected to be an extremely important factor to influence anisotropy behavior. Experiments performed on analogue materials composed of plexiglass matrix and chocolate demonstrated that aligned melt could result in an extra anisotropy whose magnitude might increase two to three times. The contribution of AMP on anisotropy is likely comparable to or larger than that induced by LPO of major minerals, possibly amphiboles and micas, in middle to lower crust. It is implied that aligned melt may be a potential factor to induce anomalously strong anisotropy within Tibetan middle to lower crust.

     

  • loading
  • Babuska, V., 1981. Anisotropy of Vp and Vs in Rock-Forming Minerals. J. Geophys. , 50: 1–6
    Cheng, C. H., 1993. Crack Models for a Transversely Isotropic Medium. J. Geophys. Res. , 98(B1): 675–684 doi: 10.1029/92JB02118
    Dell'Angelo, L. N., Tullis, J., Yund, R. A., 1987. Transition from Dislocation Creep to Melt-Enhanced Diffusion Creep in Fine-Grained Granitic Aggregates. Tectonophysics, 139(3–4): 325–332
    Eshelby, J. D., 1957. The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems. Proc. R. Soc., London, Ser. A, 241: 376–396 doi: 10.1098/rspa.1957.0133
    Katz, R. F., Spiegelman, M., Holtzman, B., 2006. The Dynamics of Melt and Shear Localization in Partially Molten Aggregates. Nature, 442(7103): 676–679 doi: 10.1038/nature05039
    Kern, H., Ivankina, T. I., Nikitin, A. N., et al., 2008. The Effect of Oriented Microcracks and Crystallographic and Shape Preferred Orientation on Bulk Elastic Anisotropy of a Foliated Biotite Gneiss from Outokumpu. Tectonophysics, 457(3–4): 143–149
    Kind, R., Ni, J. F., Zhao, W. J., et al., 1996. Evidence from Earthquake Data or a Partially Molten Crustal Layer in Southern Tibet. Science, 274(5293): 1692–1694 doi: 10.1126/science.274.5293.1692
    Kohlstedt, D. L., Zimmerman, M. E., 1996. Rheology of Partially Molten Mantle Rocks. Annu. Rev. Earth Planet. Sci. , 24: 41–62 doi: 10.1146/annurev.earth.24.1.41
    Liao, Z. J., Zhao, P., 1999. Yunnan-Tibet Geothermal Belt-Geothermal Resources and Case Histories. Science Press, Beijing
    Lloyd, G. E., Butler, R. W. H., Casey, M., et al., 2009. Mica, Deformation Fabrics and the Seismic Properties of the Continental Crust. Earth and Planetary Science Letters, 288(1–2): 320–328
    Makovsky, Y., Klemperer, S. L., Ratschbacher, L., et al., 1996. INDEPTH Wide-Angle Reflection Observation of PWave-to-S-Wave Conversion from Crustal Bright Spots in Tibet. Science, 274(5293): 1690–1691 doi: 10.1126/science.274.5293.1690
    Maluski, H., Matte, P., Brunel, M., et al., 1988. Argon 39-Argon 40 Dating of Metamorphic and Plutonic Events in the North and High Himalaya Belts (Southern Tibet, China). Tectonics, 7(2): 299–326 doi: 10.1029/TC007i002p00299
    McKenna, L. W., Walker, J. D., 1990. Geochemistry of Crustally Derived Leucocratic Igneous Rocks from the Ulugh Muztagh Area, Northern Tibet and Their Implications for the Formation of the Tibetan Plateau. J. Geophys. Res. , 95(B13): 21483–21502 doi: 10.1029/JB095iB13p21483
    Mecklenburgh, J., Rutter, E. H., 2003. On the Rheology of Partially Molten Synthetic Granite. J. Structural Geol. , 25(10): 1575–1585 doi: 10.1016/S0191-8141(03)00014-2
    Meissner, R., Rabbel, W., Kern, H., 2006. Seismic Lamination and Anisotropy of the Lower Continental Crust. Tectonophysics, 416(1–4): 81–99
    Nelson, K. D., Zhao, W. J., Brown, L. D., et al., 1996. Partially Molten Middle Crust beneath Southern Tibet: Synthesis of Project INDEPTH Results. Science, 274(5293): 1684–1688 doi: 10.1126/science.274.5293.1684
    Neogi, S., Dasgupta, S., Fukuoka, M., 1998. High P-T Polymetamorphism, Dehydration Melting, and Generation of Migmatites and Granites in the Higher Himalayan Crystalline Complex, Sikkim, India. J. Petrol. , 39(1): 61–99 doi: 10.1093/petroj/39.1.61
    Owens, T. J., Zandt, G., 1997. Implications of Crustal Property Variations for Models of Tibetan Plateau Evolution. Nature, 387(6628): 37–43 doi: 10.1038/387037a0
    Ozacar, A. A., Zandt, G., 2004. Crustal Seismic Anisotropy in Central Tibet: Implications for Deformational Style and Flow in the Crust. Geophys. Res. Lett. , 31(23): L23601. doi: 10.1029/2004GL021096
    Rodgers, A. J., Schwarts, S. Y., 1997. Low Crustal Velocities and Mantle Lithospheric Variations in Southern Tibet from Regional Pnl Waveforms. Geophys. Res. Lett. , 24(1): 9–12 doi: 10.1029/96GL03774
    Rutter, E. H., Brodie, K. H., Irving, D. H., 2006. Flow of Synthetic, Wet, Partially Molten "Granite" under Undrained Conditions: An Experimental Study. J. Geophys. Res. , 111(B6): B06407. doi: 10.1029/2005JB00425
    Rutter, E. H., Neumann, D. H. K., 1995. Experimental Deformation of Partially Molten Westerly Granite under Fluid-Absent Conditions with Implications for the Extraction of Granitic Magmas. J. Geophys. Res. , 100(B8): 15697–15715 doi: 10.1029/94JB03388
    Sapin, M., Hirn, A., 1997. Seismic Structure and Evidence for Eclogitization during the Himalayan Convergence. Tectonophysics, 273(1–2): 1–16
    Schaerer, U., Xu, R. H., Allegre, C. J., 1986. U-(Th)-Pb Systematics and Ages of Himalayan Leucogranites, South Tibet. Earth Planet. Sci. Lett. , 77(1): 35–48 doi: 10.1016/0012-821X(86)90130-5
    Shapiro, N. M., Ritzwoller, M. H., Molnar, P., et al., 2004. Thinning and Flow of Tibetan Crust Constrained by Seismic Anisotropy. Science, 305(5681): 233–236 doi: 10.1126/science.1098276
    Shen, X. J., Zhong, W. R., Guan, Y., et al., 1990. Heat Flow Profile from Yadong to Qaidam Running through the Tibetan Plateau. Chinese Science Bulletin, 35(4): 314–316
    Sherrington, H. F., Zandt, G., Frederiksen, A., 2004. Crustal Fabric in the Tibetan Plateau Based on Waveform Inversions for Seismic Anisotropy Parameters. J. Geophys. Res. , 109(B2): B02312. doi: 10.1029/2002JB002345
    Siegesmund, S., Takeshita, T., Kern, H., 1989. Anisotropy of Vp and Vs in an Amphibolite of the Deeper Crust and Its Relationship to the Mineralogical, Microstructural and Textural Characteristics of the Rock. Tectonophysics, 157(1–3): 25–38
    Teng, J. W., 1994. Physical and Dynamics of Kangding Lithosphere. Science Press, Beijing (in Chinese with English Abstract)
    Wang, J. Y., Huang, S. P., 1990. Compilation of Heat Flow Data in the China Continental Area. 2nd Edition. Seismology and Geology, 12(4): 351–363, 366 (in Chinese with English Abstract)
    Wang, Q., McDermott, F., Xu, J. F., et al., 2005. Cenozoic K-Rich Adakitic Volcanic Rocks in the Hohxil Area, Northern Tibet: Lower-Crustal Melting in an Intracontinental Setting. Geology, 33: 465–468 doi: 10.1130/G21522.1
    Weiss, T., Siegesmund, S., Rabbel, W., et al., 1999. Seismic Velocities and Anisotropy of the Lower Continental Crust: A Review. Pure and Applied Geophysics, 156(12): 97–122
    Yang, X. S., Jin, Z. M., 2001. Studies on Rb-Sr and Sm-Nd Isotope of Yadong Leucogranite in Tibet: Constraint on Its Age and Source Material. Geological Review, 47(3): 294–300 (in Chinese with English Abstract)
    Yang, X. S., Jin, Z. M., Ma, J., 2005. Anatexis in Himalayan Crust: Evidence from Geochemical and Chronological Investigations of Higher Himalayan Crystallines. Science in China (Ser. D), 48(9): 1347–1356
    Yang, X. S., Ma, J., Jin, Z. M., et al., 2003. Partial Melting and Its Implications for Understanding the Seismic Velocity Structure within the Southern Tibetan Crust. Acta Geol. Sinica, 77(1): 64–71
    Yang, X. S., Zhou, P., Ming, Y. H., 2007. Vp of Muscovite-Biotite Gneiss up to 950 ℃ at 400 MPa: Constraints on the Origin of Abnormal Seismic Layers in Continental Crust. Chinese Science Bulletin, 52(18): 2175–2179 (in Chinese) doi: 10.1360/csb2007-52-18-2175
    Yang, Y., Chen, J. Y., Yang, X. S., et al., 2010. Does Alignment of Melt Enhance Seismic Anisotropy beneath Tibet? Seismology and Geology, 32(1): 59–69 (in Chinese with English Abstract)
    Yin, Z. X., Teng, J. W., Liu, H. B., 1990. The 2-D Crustal Structure Study in the Yadong-Damxung Region of the Xizang Plateau. Bulletin of the Chinese Academy of Geological Sciences, 21: 239–245 (in Chinese with English Abstract)
    Yuan, X. H., Ni, J. F., Kind, R., et al., 1997. Lithospheric and Upper Mantle Structure of Southern Tibet from a Seismological Passive Source Experiment. J. Geophys. Res. , 102(B12): 27491–27500 doi: 10.1029/97JB02379
    Zeitler, P. K., Chamberlain, C. P., 1991. Petrogenetic and Tectonic Significance of Young Leucogranites from Northwestern Himalaya, Pakistan. Tectonics, 10(4): 729–741 doi: 10.1029/91TC00168
    Zhang, G. L., Yang, X. S., Chen, J. Y., et al., 2010. The Influencing Factor of Elastic Anisotropy in Middle to Lower Continental Crust. Seismology and Geology, 32(2): 327–337 (in Chinese with English Abstract)
    Zhao, L. S., Sen, M. K., Stoffa, P., et al., 1996. Application of very Fast Simulated Annealing to the Determination of the Crustal Structure beneath Tibet. Geophys. J. Int. , 125(2): 355–370 doi: 10.1111/j.1365-246X.1996.tb00004.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views(904) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return