Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 22 Issue 1
Feb 2011
Turn off MathJax
Article Contents
Jeong HWANG, Xiangshen ZHENG, Edward M. RIPLEY, Jong-Ik LEE, Dongbok SHIN. Isotope geochemistry of volcanic rocks from the Barton Peninsula, King George Island, Antarctica. Journal of Earth Science, 2011, 22(1): 40-51. doi: 10.1007/s12583-011-0156-y
Citation: Jeong HWANG, Xiangshen ZHENG, Edward M. RIPLEY, Jong-Ik LEE, Dongbok SHIN. Isotope geochemistry of volcanic rocks from the Barton Peninsula, King George Island, Antarctica. Journal of Earth Science, 2011, 22(1): 40-51. doi: 10.1007/s12583-011-0156-y

Isotope geochemistry of volcanic rocks from the Barton Peninsula, King George Island, Antarctica

doi: 10.1007/s12583-011-0156-y
Funds:

the KOPRI Project PP10030

More Information
  • Corresponding author: Jeong HWANG, jeongha@dju.kr
  • Received Date: 08 Jul 2010
  • Accepted Date: 20 Oct 2010
  • Publish Date: 01 Feb 2011
  • C, O, H, S and Sr isotopes were investigated to characterize the isotopic composition of the Paleocene-Eocene volcanic rocks in Barton Peninsula, King George Island, Antarctica. The analyzed samples of volcanic rocks cover a range from basalt to andesite. The δ13C and δ18O values of calcite in volcanic rocks range from −7.5‰ to −3.2‰ and 0.4‰ to 5.1‰, respectively. The homogenous δ13Ccal and depleted δ18Ocal values relative to primary magmatic values reflect the effect of high temperature alteration of volcanic rocks. The δ18O of volcanic rocks ranges from −1.1‰ to 7.2‰, and the majority of values are significantly lower than those of primary magmatic values. The lowδ18OWR values are compatible with high temperature alteration. The initial values of 87Sr/86Sr of volcanic rocks span a narrow range from 0.703 312 to 0.703 504 which belong to the present mid-oceanic ridge basalt. The values of 87Sr/86Sr of volcanics in the Barton Peninsula are similar to those determined in the Fildes Peninsula, King George Island. The δDWR and H2O contents of volcanic rocks range from −74‰ to −66‰ and 0.67 wt.% to 2.74 wt.%, respectively. The higher δDWR and H2O wt.% of volcanic rocks relative to fresh basalts also result from high temperature alteration. Sulfur isotope compositions of the volcanic rocks range from −12.5‰ to −7.0‰; these values may represent fractionation accompanying partial oxidation of magmatic S or incorporation of some bacteriogenic sulfide. The low S contents and negative correlation with C and H2O reflect the formation of calcite and breakdown of sulfide as a result of high temperature water-rock interaction.

     

  • loading
  • Agrinier, P., Hekinian, R., Bideau, D., et al., 1995. O and H Stable Isotope Compositions of Oceanic Crust and Upper Mantle Rocks Exposed in the Hess Deep near the Galapagos Triple Junction. Earth and Planetary Science Letters, 136(3–4): 183–196
    Alt, J. C., 1994. A Sulfur Isotopic Profile through the Troodos Ophiolite, Cyprus: Primary Composition and the Effects of Seawater Hydrothermal Alteration. Geochimica et Cosmochimica Acta, 58(7): 1825–1840 doi: 10.1016/0016-7037(94)90539-8
    Alt, J. C., Shanks, W. C., Jakson, M. C., 1993. Cycling of Sulfur in Subduction Zones: The Geochemistry of Sulfur in the Mariana Island Arc and Back-Arc Trough. Earth and Planetary Science Letters, 119(4): 477–494 doi: 10.1016/0012-821X(93)90057-G
    Armstrong, D. C., 1995. Acid Sulphate Alteration in a Magmatic Hydrothermal Environment, Barton Peninsula, King George Island, Antarctica. Mineralogical Magazine, 59: 429–441 doi: 10.1180/minmag.1995.059.396.05
    Bindeman, I. N., Ponomareva, V. V., Bailey, J. C., et al., 2004. Volcanic Arc of Kamchatka: A Province with High-δ18O Magma Sources and Large-Scale 18O/16O Depletion of the Upper Crust. Geochimica et Cosmochimica Acta, 68(4): 841–865 doi: 10.1016/j.gca.2003.07.009
    Birkenmajer, K., 1982. Late Cenozoic Phases of Block-Faulting on King George Island (South Shetland Islands, West Antarctica). Bulletin of the Polish Academy of Sciences: Earth Sciences, 30(1–2): 21–32
    Birkenmajer, K., Delitala, M. C., Narebski, W., et al., 1986. Geochronology of Tertiary Island Arc Volcanics and Glacigenic Deposits, King George Island, South Shetland Islands (West Antarctica). Bulletin of the Polish Academy of Sciences: Earth Sciences, 34(3): 257–273
    Birkenmajer, K., Francalanci, L., Peccerillo, A., 1991. Petrological and Geochemical Constraints on the Genesis of Mesozoic-Cenozoic Magmatism of King George Island, South Shetland Islands, Antarctica. Antarctic Science, 3(3): 293–308 doi: 10.1017/S0954102091000354
    Clayton, R. N., Mayeda, T. K., 1963. The Use of Bromine Pentafluoride in the Extraction of Oxygen from Oxides and Silicates for Isotopic Analysis. Geochimica et Cosmochimica Acta, 27(1): 43–52 doi: 10.1016/0016-7037(63)90071-1
    Davies, R. E. S., 1982. The Geology of the Marian Cove Area, King George Island and Tertiary Age for Its Supposed Jurassic Volcanic Rocks. British Antarctic Survey Bulletin, 51: 151–165
    DeHoog, J. C. M., Taylor, B. E., Van-Bergan, M. J., 2001. Sulfur Isotope Systematics of Basaltic Lavas from Indonesia: Implications for the Sulfur Cycle in Subduction Zones. Earth and Planetary Science Letters, 189(3–4): 237–252
    Deines, P., 1989. Stable Isotope Variations in Carbonatites. In: Bell, K., ed., Carbonatites: Genesis and Evolution. Unwin Hyman, London. 301–359
    Dickin, A. P., 2005. Radogenic Isotope Geology. 2nd ed. . Cambridge University Press, Cambridge. 492
    Gao, Y., Hoefs, J., Przybilla, R., et al., 2006. A Complete Oxygen Isotope Profile through the Lower Oceanic Crust, ODP Hole 735B. Chemical Geology, 233(3–4): 217–234
    Hamlyn, P. R., Keays, R. R., 1986. Sulfur Saturation and Second-Stage Melts: Application to the Bushveld Platinum Metal Deposits. Economic Geology, 81: 1431–1445 doi: 10.2113/gsecongeo.81.6.1431
    Hamlyn, P. R., Keays, R. R., Cameron, W. E., et al., 1985. Precious Metals in Magnesian Low-Ti Lavas: Implications for Metallogenesis and Sulfur Saturation in Primary Magmas. Geochimica et Cosmochimica Acta, 49(8): 1797–1811 doi: 10.1016/0016-7037(85)90150-4
    Harmon, R. S., Hoefs, J., 1995. Oxygen Isotope Heterogeneity of the Mantle Deduced from Global 18O Systemaics of Basalts from Different Geotectonic Settings. Contrib. Mineral. Petrol. , 120(1): 95–114 doi: 10.1007/BF00311010
    Hochstaedter, A. G., Gill, J. B., Kusakabe, M., et al., 1990. Volcanism in the Sumisu Rift, I. Major Element, Volatile, and Stable Isotope Geochemistry. Earth and Planetary Science Letters, 100(1–3): 179–194
    Hur, S. D., Lee, J. I., Hwang, J., et al., 2001. K-Ar Age and Geochemistry of Hydrothermal Alteration in the Barton Peninsula, King George Island, Antarctica. Ocean Polar Research, 23(1): 11–21
    Hwang, J., Lee, J. I., 1998. Hydrothermal Alteration and Mineralization in the Granodioritic Stock of the Barton Peninsula, King George Island, Antarctica. Economic and Environmental Geology, 31(3): 171–183
    Kawahata, H., Kusakabe, M., Kikuchi, Y., 1987. Strontium, Oxygen, and Hydrogen Isotope Geochemistry of Hydrothermally Altered and Eeathered Rocks in DSDP Hole 504B, Costa Rica Rift. Earth and Planetary Science Letters, 85(4): 343–355 doi: 10.1016/0012-821X(87)90132-4
    Kim, H., Choe, M. Y., Lee, J. I., et al., 2002. Thermal Metamorphism of Volcanic Rocks on Barton Peninsula, King George Island, Antarctica. Geosciences Journal, 6(4): 303–317 doi: 10.1007/BF03020615
    Kim, H., Lee, J. I., Choe, M. Y., et al., 2000. Geochronology Evidence for Early Cretaceous Volcanic Activity on Barton Peninsula, King George Island, Antarctica. Polar Research, 19(2): 251–260 doi: 10.3402/polar.v19i2.6549
    Kyser, T. K., O'Neil, J. R., 1984. Hydrogen Isotope Systematics of Submarine Basalts. Geochimica et Cosmochimica Acta, 48(10): 2123–2133 doi: 10.1016/0016-7037(84)90392-2
    Lee, J. I., Hur, S. D., Yoo, C. M., et al., 2002. Geological Map of Barton and Weaver Peninsulas, King George Island, Antarctica. Korea Ocean Research and Development Institute, Ansan. 30
    Lee, J. I., Hwang, J., Kim, H., et al., 1996. Subvolcanic Zoned Granitic Pluton in the Barton and Weaver Peninsulas, King George Island, Antarctica. Proceedings of the NIPR Symposium on Antarctic Geosciences, 9: 76–90
    Machado, A., Chemale, F., Conceicao, R. V., et al., 2005. Modeling of Subduction Components in the Genesis of the Meso-Cenozoic Igneous Rocks from the South Shetland Arc, Antarctica. Lithos, 82(3–4): 435–453
    McCrea, J. M., 1950. On the Isotopic Chemistry of Carbonates and a Paleotemperaturc Scale. J. Chem. Phys. , 18: 849–857 doi: 10.1063/1.1747785
    Nilsson, K., Peach, C. L., 1993. Sulfur Speciation, Oxidation State, and Sulfur Concentration in Backarc Magmas. Geochimica et Cosmochimica Acta, 57(15): 3807–3813 doi: 10.1016/0016-7037(93)90158-S
    Nriagu, J. O., Rees, C. E., Mekhtiyeva, V. L., et al., 1991. Hydrosphere. In: Krouse, H. R., Grinenko, V. A., eds., Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment. SCOPE 43. John Wiley and Sons, Chichester. 177–265
    Ohmoto, H., Goldhaber, M. B., 1997. Sulfur and Carbon Isotopes. In: Barnes, H. L., ed., Geochemistry of Hydrothermal Ore Deposits. John Wiley and Sons, New York. 517–611
    Park, B. K., 1989. Potassium-Argon Radiometric Ages of Volcanic and Plutonic Rocks from the Barton Peninsula, King George Island, Antarctica. Journal of the Geological Society of Korea, 25(4): 495–497
    Sakai, H., Casadevall, T. J., Moore, J. G., 1982. Chemistry and Isotope Ratios of Sulfur in Basalts and Volcanic Gases at Kilauea Volcano, Hawaii. Geochimica et Cosmochimica Acta, 46(5): 729–738 doi: 10.1016/0016-7037(82)90024-2
    Seewald, J. S., Seyfried, W. E., 1990. The Effect of Temperature on Metal Mobility in Subseafloor Hydrothermal Systems: Constraints from Basalt Alteration Experiments. Earth and Planetary Science Letters, 101(2–4): 388–403
    Sharp, Z. D., Atudorei, V., Durakiewicz, T., 2001. A Rapid Method for Determination of Hydrogen and Oxygen Isotope Ratios from Water and Hydrous Minerals. Chemical Geology, 178(1–4): 197–210
    Shin, D., Lee, J. I., Hwang, J., et al., 2009. Hydrothermal Alteration and Isotopic Variations of Igneous Rocks in Barton Peninsula, King George Island, Antarctica. Geoscience Journal, 13(1): 103–112 doi: 10.1007/s12303-009-0009-1
    Smellie, J. L., Pankhurst, R. J., Thomson, M. R. A., et al., 1984. The Geology of the South Shetland Islands: VI. Stratigraphy. Geochemistry and Evolution. British Antarctic Survey Scientific Report, 87: 85
    So, C. S., Yun, S. T., Park, M. E., 1995. Geochemistry of a Fossil Hydrothermal System at Barton Peninsula, King George Island. Antarctic Science, 7(1): 63–72 doi: 10.1017/S0954102095000101
    Stakes, D., Vanko, D. A., 1986. Multistage Hydrothermal Alteration of Gabbroic Rocks from the Failed Mathematician Ridge. Earth and Planetary Science Letters, 79(1–2): 75–92
    Studley, S. A., Ripley, E. M., Elswick, E. R., et al., 2002. Analysis of Sulfides in Whole Rock Matrices by Elemental Analyzer-Continuous Flow Isotope Ratio Mass Spectrometry. Chemical Geology, 192(1–2): 141–148
    Swart, P. K., Burns, S. J., Leder, J. J., 1991. Fractionation of the Stable Isotopes of Oxygen and Carbon in Carbon Dioxide during the Reaction of Calcite with Phosphoric Acid as a Function of Temperature and Technique. Chemical Geology, 86(2): 89–96
    Taylor, H. P., Frechen, J., Degens, E. T., 1967. Oxygen and Carbon Isotope Studies of Carbonatites from the Laacher See District, West Germany and the Alnoe District, Sweden. Geochimica et Cosmochimica Acta, 31(3): 407–430 doi: 10.1016/0016-7037(67)90051-8
    Teagle, D. A. H., Alt, J. C., Chiba, H., et al., 1998. Strontium and Oxygen Isotopic Constraints on Fluid Mixing, Alteration and Mineralization in the TAG Hydrothermal Deposit. Chemical Geology, 149(1–2): 1–24
    Tokarski, A. K., 1988. Structural Analysis of Barton Peninsula (King George Island, West Antarctica): An Example of Volcanic Arc Tectonics. Studia Geologica Polonica, 95: 53–63
    Ueda, A., Sakai, H., 1984. Sulfur Isotope Study of Quaternary Volcanic Rocks from the Japanese Islands Arc. Geochimica et Cosmochimica Acta, 48(9): 1837–1848 doi: 10.1016/0016-7037(84)90037-1
    Vroon, P. Z., Lowry, D., Van-Bergen, M. J., et al., 2001. Oxygen Isotope Systematics of the Banda Arc: Low δ18O Despite Involvement of Subducted Continental Material in Magma Genesis. Geochimica et Cosmochimica Acta, 65(4): 589–609 doi: 10.1016/S0016-7037(00)00554-8
    Willan, R. C. R., Armstrong, D. C., 2002. Successive Geothermal, Volcanic-Hydrothermal and Contact-Metasomatic Events in Cenozoic Volcanic-Arc Basalts, South Shetland Islands, Antarctica. Geological Magazine, 139: 209–231 doi: 10.1017/S0016756802006301
    Yeo, J. P., Lee, J. L., Hur, S. D., et al., 2004. Geochemistry of Volcanic Rocks in Barton and Weaver Peninsulas, King George Island, Antarctica: Implications for Arc Maturity and Correlation with Fossilized Volcanic Centers. Geoscience Journal, 8(1): 11–25 doi: 10.1007/BF02910275
    Yoo, C. M., Choe, M. Y., Jo, H. R., et al., 2001. Volcaniclastic Sedimentation of the Sejong Formation (Late Paleocene-Eocene), Barton Peninsula, King George Island, Antarctica. Ocean and Polar Research, 23(2): 97–107
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(779) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return