Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 22 Issue 1
Feb 2011
Turn off MathJax
Article Contents
Jingtian Tang, Feiyan Wang, Xiao Xiao, Lincheng Zhang. 2.5-D DC Resistivity Modeling Considering Flexibility and Accuracy. Journal of Earth Science, 2011, 22(1): 124-130. doi: 10.1007/s12583-011-0163-z
Citation: Jingtian Tang, Feiyan Wang, Xiao Xiao, Lincheng Zhang. 2.5-D DC Resistivity Modeling Considering Flexibility and Accuracy. Journal of Earth Science, 2011, 22(1): 124-130. doi: 10.1007/s12583-011-0163-z

2.5-D DC Resistivity Modeling Considering Flexibility and Accuracy

doi: 10.1007/s12583-011-0163-z
Funds:

he National High Technology Research and Development Program of China (863 Program) 2007AA06Z134

the National Natural Science Foundation of China 40874072

More Information
  • Corresponding author: Feiyan Wang, wangfeiyan35@126.com
  • Received Date: 22 Apr 2010
  • Accepted Date: 10 Aug 2010
  • Publish Date: 01 Feb 2011
  • We highlighted the flexibility of using unstructured mesh together with the local refinement by a resistivity model with complicated topography. The effect of topography is emphasized. Based on this, we calculated a specific class of layered models and found that the accuracy is not always satisfactory by utilizing the standard approach. As an improvement, we employed the layered earth as the reference model to calculate the wavenumbers. The comparison demonstrates that the accuracy is considerably improved by using this enhanced approach.

     

  • loading
  • Coggon, J. H., 1971. Electromagnetic and Electrical Modeling by the Finite Element Method. Geophysics, 36(1): 132–155 doi: 10.1190/1.1440151
    Dey, A., Morrison, H. F., 1979. Resistivity Modelling for Arbitrarily Shaped Two-Dimensional Structures. Geophysical Prospecting, 27(1): 106–136 doi: 10.1111/j.1365-2478.1979.tb00961.x
    Erdogan, E., Demirci, I., Candansayar, M. E., 2008. Incorporating Topography into 2D Resistivity Modeling Using Finite-Element and Finite-Difference Approaches. Geophysics, 73(3): F135–F142 doi: 10.1190/1.2905835
    Fox, R. C., Hohmann, G. W., Killpack, T. J., et al., 1980. Topographic Effects in Resistivity and Induced-Polarization Surveys. Geophysics, 45(1): 75–93 doi: 10.1190/1.1441041
    Frey, P. J., 2001. MEDIT—An Interactive Mesh Visualization Software. INRIA Technical Report 0253. http://www-rocq.inria.fr/gamma/medit/medit.html. Accessed November 26, 2007
    Hvozdara, M., Kaikkonen, P., 1996. The Boundary Integral Solution of a DC Geoelectric Problem for a 2-D Body Embedded in a Two-Layered Earth. Journal of Applied Geophysics, 34(3): 169–186 doi: 10.1016/0926-9851(95)00013-5
    Lesur, V., Cuer, M., Straub, A., 1999. 2-D and 3-D Interpretation of Electrical Tomography Measurements, Part 1: The Forward Problem. Geophysics, 64(2): 386–395 doi: 10.1190/1.1444543
    Li, J. M., 2005. Geoelectric Field and Electric Prospecting. Geological Publishing House, Beijing. 473 (in Chinese)
    Li, Y. G., Spitzer, K., 2002. Three-Dimensional DC Resistivity Forward Modelling Using Finite Elements in Comparison with Finite-Difference Solutions. Geophysical Journal International, 151(3): 924–934 doi: 10.1046/j.1365-246X.2002.01819.x
    Mufti, I. R., 1976. Finite-Difference Resistivity Modeling for Arbitrarily Shaped Two-Dimensional Structures. Geophysics, 41(1): 62–78 doi: 10.1190/1.1440608
    Mundry, E., 1984. Geoelectrical Model Calculations for Two-Dimensional Resistivity Distributions. Geophysical Prospecting, 32(1): 124–131 doi: 10.1111/j.1365-2478.1984.tb00721.x
    Pidlisecky, A., Knight, R., 2008. FW2_5D: A MATLAB 2.5-D Electrical Resistivity Modeling Code. Computers & Geosciences, 34(12): 1645–1654
    Ruan, B. Y., 2001. 2-D Electrical Modeling due to a Current Point by FEM with Variation of Conductivity within Each Triangular Element. Guangxi Sciences, 8(1): 1–3 (in Chinese with English Abstract)
    Scalicky, T., 1996. LASPack Reference Manual. http://www.netlib.org. Accessed September 9, 2007
    Shewchuk, J. R., 1996. Triangle: A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator. WACG, 1st Workshop on Applied Computational Geometry. 124–133. http://www.cs.cmu.edu/~quake/triangle.html. Accessed March 12, 2007
    Snyder, D. D., 1976. A Method for Modeling the Resistivity and IP Response of Two-Dimensional Bodies. Geophysics, 41(5): 997–1015 doi: 10.1190/1.1440677
    Tang, J. T., Wang, F. Y., 2008. 2.5-D Direct Current Resistivity Simulation Based on the Unstructured Mesh. Computing Techniques for Geophysical and Geochemical Exploration, 30(5): 413–418 (in Chinese)
    Tang, J. T., Wang, F. Y., Ren Z. Y., 2010. 2.5-D DC Resistivity Modeling by Adaptive Finite-Element Method with Unstructured Triangulation. Chinese J. Geophys. , 53(3): 708–716 (in Chinese with English Abstract)
    Tsourlos, P. I., Szymanski, J. E., Tsokas, G. N., 1999. The Effect of Terrain Topography on Commonly Used Resistivity Arrays. Geophysics, 64(5): 1357–1363 doi: 10.1190/1.1444640
    Xiong, B., Ruan, B. Y., 2002. A Numerical Simulation of 2-D Geoelectric Section with Biquadratic Change of Potential for Resistivity Sounding by the Finite Element Method. Chinese Journal of Geophysics, 45(2): 285–295 (in Chinese)
    Xu, S. Z., Duan, B. C., Zhang, D. H., 2000. Selection of the Wavenumbers K Using an Optimization Method for the Inverse Fourier Transform in 2.5D Electrical Modeling. Geophysical Prospecting, 48(5): 789–796 doi: 10.1046/j.1365-2478.2000.00210.x
    Xu, S. Z., Zhao, S. K., Ni, Y., 1998. A Boundary Element Method for 2-D DC Resistivity Modeling with a Point Current Source. Geophysics, 63(2): 399–404 doi: 10.1190/1.1444339
    Zienkiewicz, O. C., Taylor, R. L., 2000. The Finite Element Method, Volume Ⅰ: The Basic. Fifth Edition. Butterworth-Heinemann, Woburn, MA. 347
    Zienkiewicz, O. C., Zhu, J. Z., 1992a. The Superconvergent Patch Recovery and a Posteriori Error Estimates. Part 1: the Tecovery Technique. International Journal for Numerical Methods in Engineering, 33(7): 1331–1364
    Zienkiewicz, O. C., Zhu, J. Z., 1992b. The Superconvergent Patch Recovery and a Posteriori Error Estimates. Part 2: Error Estimates and Adaptivity. International Journal for Numerical Methods in Engineering, 33(7): 1365–1382
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views(895) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return