Coggon, J. H., 1971. Electromagnetic and Electrical Modeling by the Finite Element Method. Geophysics, 36(1): 132–155 doi: 10.1190/1.1440151 |
Dey, A., Morrison, H. F., 1979. Resistivity Modelling for Arbitrarily Shaped Two-Dimensional Structures. Geophysical Prospecting, 27(1): 106–136 doi: 10.1111/j.1365-2478.1979.tb00961.x |
Erdogan, E., Demirci, I., Candansayar, M. E., 2008. Incorporating Topography into 2D Resistivity Modeling Using Finite-Element and Finite-Difference Approaches. Geophysics, 73(3): F135–F142 doi: 10.1190/1.2905835 |
Fox, R. C., Hohmann, G. W., Killpack, T. J., et al., 1980. Topographic Effects in Resistivity and Induced-Polarization Surveys. Geophysics, 45(1): 75–93 doi: 10.1190/1.1441041 |
Frey, P. J., 2001. MEDIT—An Interactive Mesh Visualization Software. INRIA Technical Report 0253. http://www-rocq.inria.fr/gamma/medit/medit.html. Accessed November 26, 2007 |
Hvozdara, M., Kaikkonen, P., 1996. The Boundary Integral Solution of a DC Geoelectric Problem for a 2-D Body Embedded in a Two-Layered Earth. Journal of Applied Geophysics, 34(3): 169–186 doi: 10.1016/0926-9851(95)00013-5 |
Lesur, V., Cuer, M., Straub, A., 1999. 2-D and 3-D Interpretation of Electrical Tomography Measurements, Part 1: The Forward Problem. Geophysics, 64(2): 386–395 doi: 10.1190/1.1444543 |
Li, J. M., 2005. Geoelectric Field and Electric Prospecting. Geological Publishing House, Beijing. 473 (in Chinese) |
Li, Y. G., Spitzer, K., 2002. Three-Dimensional DC Resistivity Forward Modelling Using Finite Elements in Comparison with Finite-Difference Solutions. Geophysical Journal International, 151(3): 924–934 doi: 10.1046/j.1365-246X.2002.01819.x |
Mufti, I. R., 1976. Finite-Difference Resistivity Modeling for Arbitrarily Shaped Two-Dimensional Structures. Geophysics, 41(1): 62–78 doi: 10.1190/1.1440608 |
Mundry, E., 1984. Geoelectrical Model Calculations for Two-Dimensional Resistivity Distributions. Geophysical Prospecting, 32(1): 124–131 doi: 10.1111/j.1365-2478.1984.tb00721.x |
Pidlisecky, A., Knight, R., 2008. FW2_5D: A MATLAB 2.5-D Electrical Resistivity Modeling Code. Computers & Geosciences, 34(12): 1645–1654 |
Ruan, B. Y., 2001. 2-D Electrical Modeling due to a Current Point by FEM with Variation of Conductivity within Each Triangular Element. Guangxi Sciences, 8(1): 1–3 (in Chinese with English Abstract) |
Scalicky, T., 1996. LASPack Reference Manual. http://www.netlib.org. Accessed September 9, 2007 |
Shewchuk, J. R., 1996. Triangle: A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator. WACG, 1st Workshop on Applied Computational Geometry. 124–133. http://www.cs.cmu.edu/~quake/triangle.html. Accessed March 12, 2007 |
Snyder, D. D., 1976. A Method for Modeling the Resistivity and IP Response of Two-Dimensional Bodies. Geophysics, 41(5): 997–1015 doi: 10.1190/1.1440677 |
Tang, J. T., Wang, F. Y., 2008. 2.5-D Direct Current Resistivity Simulation Based on the Unstructured Mesh. Computing Techniques for Geophysical and Geochemical Exploration, 30(5): 413–418 (in Chinese) |
Tang, J. T., Wang, F. Y., Ren Z. Y., 2010. 2.5-D DC Resistivity Modeling by Adaptive Finite-Element Method with Unstructured Triangulation. Chinese J. Geophys. , 53(3): 708–716 (in Chinese with English Abstract) |
Tsourlos, P. I., Szymanski, J. E., Tsokas, G. N., 1999. The Effect of Terrain Topography on Commonly Used Resistivity Arrays. Geophysics, 64(5): 1357–1363 doi: 10.1190/1.1444640 |
Xiong, B., Ruan, B. Y., 2002. A Numerical Simulation of 2-D Geoelectric Section with Biquadratic Change of Potential for Resistivity Sounding by the Finite Element Method. Chinese Journal of Geophysics, 45(2): 285–295 (in Chinese) |
Xu, S. Z., Duan, B. C., Zhang, D. H., 2000. Selection of the Wavenumbers K Using an Optimization Method for the Inverse Fourier Transform in 2.5D Electrical Modeling. Geophysical Prospecting, 48(5): 789–796 doi: 10.1046/j.1365-2478.2000.00210.x |
Xu, S. Z., Zhao, S. K., Ni, Y., 1998. A Boundary Element Method for 2-D DC Resistivity Modeling with a Point Current Source. Geophysics, 63(2): 399–404 doi: 10.1190/1.1444339 |
Zienkiewicz, O. C., Taylor, R. L., 2000. The Finite Element Method, Volume Ⅰ: The Basic. Fifth Edition. Butterworth-Heinemann, Woburn, MA. 347 |
Zienkiewicz, O. C., Zhu, J. Z., 1992a. The Superconvergent Patch Recovery and a Posteriori Error Estimates. Part 1: the Tecovery Technique. International Journal for Numerical Methods in Engineering, 33(7): 1331–1364 |
Zienkiewicz, O. C., Zhu, J. Z., 1992b. The Superconvergent Patch Recovery and a Posteriori Error Estimates. Part 2: Error Estimates and Adaptivity. International Journal for Numerical Methods in Engineering, 33(7): 1365–1382 |