Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 22 Issue 2
Apr 2011
Turn off MathJax
Article Contents
Guizhi Zhu, Taras Gerya, David A Yuen. Melt Evolution above a Spontaneously Retreating Subducting Slab in a Three-Dimensional Model. Journal of Earth Science, 2011, 22(2): 137-142. doi: 10.1007/s12583-011-0165-x
Citation: Guizhi Zhu, Taras Gerya, David A Yuen. Melt Evolution above a Spontaneously Retreating Subducting Slab in a Three-Dimensional Model. Journal of Earth Science, 2011, 22(2): 137-142. doi: 10.1007/s12583-011-0165-x

Melt Evolution above a Spontaneously Retreating Subducting Slab in a Three-Dimensional Model

doi: 10.1007/s12583-011-0165-x
Funds:

the SNF 200021-116381/1

the SNF 200020-126832/1

More Information
  • Corresponding author: Guizhi Zhu, guizhi.zhu@erdw.ethz.ch
  • Received Date: 20 Aug 2010
  • Accepted Date: 18 Nov 2010
  • Publish Date: 01 Apr 2011
  • Dehydration of the subducting slab favors the melting of the surrounding mantle. Water content and melt evolution atop a spontaneously retreating subducting slab are reported in a three-dimensional (3-D) model. We find that fluids, including water and melts in the rocks, vary substantially along the trench, which cannot be found in two-dimensional (2-D) models. Their maxima along the subducting slab are mainly located at about 50 to 70 and 120 to 140 km. Volumetric melt production rate changes spatially and episodically atop the slab, which may reflect the intensity and variations of volcanoes.

     

  • loading
  • Arcay, D., Tric, E., Doin, M. P., 2005. Numerical Simulations of Subduction Zones: Effect of Slab Dehydration on the Mantle Wedge Dynamics. Phys. Earth Planet. Inter. , 149(1–2): 133–153
    Blacic, J. D., 1972. Effects of Water on the Experimental Deformation of Olivine. In: Heard, H. C., Borg, I. Y., Carter, N. L., et al., eds., Flow and Fracture of Rocks. American Geophysical Union, Washington DC. 109–115
    Conder, J. A., Wiens, D. A., 2007. Rapid Mantle Flow beneath the Tonga Volcanic Arc. Earth Planet. Sci. Lett. , 264(1–2): 299–307
    de Ronde, C. E. J., Baker, E. T., Massoth, G. J., et al., 2007. Submarine Hydrothermal Activity along the Mid-Kermadec Arc, New Zealand: Large-Scale Effects on Venting. Geochem., Geophys., Geosyst. , 8: Q07007
    Gerya, T. V., 2010. Introduction to Numerical Geodynamic Modelling. Cambridge University Press, Cambridge
    Gerya, T. V., Connolly, J. A. D., Yuen, D. A, et al., 2006. Seismic Implications of Mantle Wedge Plumes. Phys. Earth Planet. Int. , 156: 59–74 doi: 10.1016/j.pepi.2006.02.005
    Gerya, T. V., Connolly, J. A. D., Yuen, D. A., 2008. Why is Terrestrial Subduction One-Sided? Geology, 36: 43–46 doi: 10.1130/G24060A.1
    Gerya, T. V., Stoeckhert, B., Perchuk, A. L., 2002. Exhumation of High-Pressure Metamorphic Rocks in a Subduction Channel: A Numerical Simulation. Tectonics, 21(6): 1056. doi: 10.1029/2002TC001406
    Gerya, T. V., Yuen, D. A., 2003a. Characteristics-Based Marker-in-Cell Method with Conservative Finite-Differences Schemes for Modeling Geological Flows with Strongly Variable Transport Properties. Phys. Earth Planet. Inter. , 140(4): 293–318 doi: 10.1016/j.pepi.2003.09.006
    Gerya, T. V., Yuen, D. A., 2003b. Rayleigh-Taylor Instabilities from Hydration and Melting Propel 'Cold Plumes' at Subduction Zones. Earth Planet. Sci. Lett. , 212(1–2): 47–62
    Gorczyk, W., Gerya, T. V., Connolly, J. A. D., et al., 2007. Growth and Mixing Dynamics of Mantle Wedge Plumes. Geology, 35: 587–590 doi: 10.1130/G23485A.1
    Grove, T. L., Chatterjee, N., Parman, S. W., et al., 2006. The Influence of H2O on Mantle Wedge Melting. Earth Planet. Sci. Lett. , 249(1–2): 74–89
    Hall, P. S., Kincaid, C., 2001. Diapiric Flow at Subduction Zones: A Recipe for Rapid Transport. Science, 292(5526): 2472–2475 doi: 10.1126/science.1060488
    Hebert, L. B., Antoshechkina, P., Asimow, P., et al., 2009. Emergence of a Low-Viscosity Channel in Subduction Zones through the Coupling of Mantle Flow and Thermodynamics. Earth Planet. Sci. Lett. , 278(3–4): 243–256
    Hirth, G., Kohlstedt, D. L., 2003. Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists. In: Eiler, J. E., ed., Inside the Subduction Factory. American Geophysical Union, Washington DC. 83–105
    Honda, S., Gerya, T. V., Zhu, G., 2010. A Simple Three-Dimensional Model of Thermochemical Convection in the Mantle Wedge. Earth Planet. Sci. Lett. , 290(3–4): 311–318
    Iwamori, H., 1998. Transportation of H2O and Melting in Subduction Zones. Earth Planet. Sci. Lett. , 160(1–2): 65–80
    Karato, S. I., 2008. Deformation of Earth Materials: Introduction to the Rheology of the Solid Earth. Cambridge University Press, Cambridge. 463
    Karato, S. I., 2010. Rheology of the Earth's Mantle: A Historical Review. Gondwana Research, 18(1): 17–45 doi: 10.1016/j.gr.2010.03.004
    Karato, S. I., Jung, H. Y., 1998. Water, Partial Melting and the Origin of Seismic Low Velocity and High Attenuation Zone in the Upper Mantle. Earth Planet. Sci. Lett. , 157(3–4): 193–207
    Karato, S. I., Jung, H. Y., 2003. Effects of Pressure on High-Temperature Dislocation Creep in Olivine. Poilosophical Magazine A, 83(3): 401–414
    Kimura, J. I., Yoshida, T., 2006. Contributions of Slab Fluid, Mantle Wedge and Crust to the Origin of Quaternary Lavas in the NE Japan Arc. J. Petrol. , 47(11): 2185–2232 doi: 10.1093/petrology/egl041
    Mysen, B. O., Boettcher, A. L., 1975. Melting of a Hydrous Mantle: Ⅱ. Geochemistry of Crystals and Liquids Formed by Anatexis of Mantle Peridotite at High Pressures and High Temperatures as a Function of Controlled Activities of Water, Hydrogen, and Carbon Dioxide. J. Petrol. , 16(3): 549–593
    Nikolaeva, K., Gerya, T. V., Connolly, J. A. D., 2008. Numerical Modelling of Crustal Growth in Intraoceanic Volcanic Arcs. Phys. Earth Planet. Inter. , 171(1–4): 336–356
    Peacock, S. M., 1990. Fluid Processes in Subduction Zones. Science, 248(4953): 329–337 doi: 10.1126/science.248.4953.329
    Plank, T., Cooper, L. B., Manning, C. E., 2009. Emerging Geothermometers for Estimating Slab Surface Temperatures. Nature Geoscience, 2(9): 611–615 doi: 10.1038/ngeo614
    Ranalli, G., 1995. Rheology of the Earth. 2nd ed. . Chapman and Hall, London. 413
    Stern, R. J., 2002. Subduction Zones. Rev. Geophys. , 40(4): 1012
    Stern, R. J., 2004. Subduction Initiation: Spontaneous and Induced. Earth Planet. Sci. Lett. , 226(3–4): 275–292
    Wyss, M., Hasegawa, A., Nakajima, J., 2001. Source and Path of Magma for Volcanoes in the Subduction Zone of Northeastern Japan. Geophys. Res. Lett. , 28(9): 1819–1822 doi: 10.1029/2000GL012558
    Zhao, D., 2001. Seismological Structure of Subduction Zones and Its Implications for Arc Magmatism and Dynamics. Phys. Earth Planet. Inter. , 127(1–4): 197–214
    Zhao, D., Mishra, O. P., Sanda, R., 2002. Influence of Fluids and Magma on Earthquakes: Seismological Evidence. Phys. Earth Planet. Inter. , 132(4): 249–267 doi: 10.1016/S0031-9201(02)00082-1
    Zhao, D., Wang, Z., Umino, N., et al., 2009. Mapping the Mantle Wedge and Interpolate Thrust Zone of the Northeast Japan Arc. Tectonophysics, 467(1–4): 89–106
    Zhu, G., Gerya, T. V., Yuen, D. A., et al., 2009. Three-Dimensional Dynamics of Hydrous Thermal-Chemical Plumes in Oceanic Subduction Zones. Geochem., Geophys., Geosyst. , 10: Q11006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(452) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return