Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 22 Issue 2
Apr 2011
Turn off MathJax
Article Contents
David A Yuen, Nicola Tosi, Ondrej Čadek. Influences of Lower-Mantle Properties on the Formation of Asthenosphere in Oceanic Upper Mantle. Journal of Earth Science, 2011, 22(2): 143-154. doi: 10.1007/s12583-011-0166-9
Citation: David A Yuen, Nicola Tosi, Ondrej Čadek. Influences of Lower-Mantle Properties on the Formation of Asthenosphere in Oceanic Upper Mantle. Journal of Earth Science, 2011, 22(2): 143-154. doi: 10.1007/s12583-011-0166-9

Influences of Lower-Mantle Properties on the Formation of Asthenosphere in Oceanic Upper Mantle

doi: 10.1007/s12583-011-0166-9
Funds:

the CMG Program of the National Science Foundation 

the Senior Visiting Professorship Program of the Chinese Academy of Sciences 

the Helmholtz Association through the Research Alliance "Planetary Evolution and Life" 

the European Commission through the Marie Curie Research Training Network c2c MRTN-CT-2006-035957

More Information
  • Corresponding author: Nicola Tosi, nic.tosi@googlemail.com
  • Received Date: 22 Sep 2010
  • Accepted Date: 28 Dec 2010
  • Publish Date: 01 Apr 2011
  • Asthenosphere is a venerable concept based on geological intuition of Reginald Daly nearly 100 years ago. There have been various explanations for the existence of the asthenosphere. The concept of a plume-fed asthenosphere has been around for a few years due to the ideas put forth by Yamamoto et al.. Using a two-dimensional Cartesian code based on finite-volume method, we have investigated the influences of lower-mantle physical properties on the formation of a low-viscosity zone in the oceanic upper mantle in regions close to a large mantle upwelling. The rheological law is Newtonian and depends on both temperature and depth. An extended-Boussinesq model is assumed for the energetics and the olivine to spinel, the spinel to perovskite and perovskite to post-perovskite (ppv) phase transitions are considered. We have compared the differences in the behavior of hot upwellings passing through the transition zone in the mid-mantle for a variety of models, starting with constant physical properties in the lower-mantle and culminating with complex models which have the post-perovskite phase transition and depth-dependent coefficient of thermal expansion and thermal conductivity. We found that the formation of the asthenosphere in the upper mantle in the vicinity of large upwellings is facilitated in models where both depth-dependent thermal expansivity and conductivity are included. Models with constant thermal expansivity and thermal conductivity do not produce a hot low-viscosity zone, resembling the asthenosphere. We have also studied the influences of a cylindrical model and found similar results as the Cartesian model with the important difference that upper-mantle temperatures were much cooler than the Cartesian model by about 600 to 700 K. Our findings argue for the potentially important role played by lower-mantle material properties on the development of a plume-fed asthenosphere in the oceanic upper mantle.

     

  • loading
  • Ammann, M. W., Brodholt, J. P., Wookey, J., et al., 2010. First-Principles Constraints on Diffusion in Lower Mantle Minerals and a Weak D" Layer. Nature, 465(7297): 462–465 doi: 10.1038/nature09052
    Bina, C. R., Helffrich, G., 1994. Phase Transitions Clapeyron Slopes and Transition Zone Seismic Discontinuity Topography. J. Geophys. Res. , 99(B8): 15853–15860 doi: 10.1029/94JB00462
    Bottinga, Y., Allegre C. J., 1973. Thermal Aspects of Seafloor Spreading and the Nature of the Oceanic Crust. Tectonophysics, 18(1–2): 1–17
    Čadek, O., van der Berg, A. P., 1998. Radial Profiles of Temperature and Viscosity in the Earth's Mantle Inferred from the Geoid and Lateral Seismic Structure. Earth Planet. Sci. Lett. , 164(3–4): 607–615
    Cao, Q., Wang, P., van der Hilst, R. D., et al., 2010a. Imaging the Upper Mantle Transition Zone with a Generalized Radon Transform of SS Precursors. Phys. Earth Planet. Inter. , 180(1–2): 80–91
    Cao, Q., van der Hilst, R. D., de Hoop, M. V., et al., 2010b. Complex Plume Dynamics in the Transition Zone underneath the Hawaii Hotspot: Seismic Imaging Results. AGU Fall Meeting
    Chopelas, A., Boehler, R., 1992. Thermal Expansivity in the Lower Mantle. Geophys. Res. Lett. , 19(19): 1983–1986 doi: 10.1029/92GL02144
    Daly, R. A., 1914. Igneous Rocks and Their Origin. McGraw-Hill, New York. 563
    Davies, G. F., 1999. Dynamic Earth. Cambridge University Press, Cambridge. 458
    de Koker, N., 2010. Thermal Conductivity of MgO Periclase at High Pressure: Implications for the D" Region. Earth Planet. Sci. Lett. , 292(3–4): 392–398
    Dixon, J. E., Dixon, T. H., Bell, D. R., et al., 2004. Lateral Variation in Upper Mantle Viscosity: Role of Water. Earth Planet. Sci. Lett. , 222(2): 451–467 doi: 10.1016/j.epsl.2004.03.022
    Elsasser, W. M., 1969. Convection and Stress Propagation in the Upper Mantle. In: Runcorn, S. K., ed., The Application of Modern Physics to the Earth and Planetary Interiors. Wiley, New York. 223–246
    Forte, A. M., Mitrovica, J. X., 2001. Deep-Mantle High-Viscosity Flow and Thermochemical Structure Inferred from Seismic and Geodynamic Data. Nature, 410(6832): 1049–1056 doi: 10.1038/35074000
    Goncharov, A. F., Struzhkin, V. V., Montoya, J. A., et al., 2010. Effect of Composition, Structure, and Spin State on the Thermal Conductivity of the Earth's Lower Mantle. Phys. Earth Planet. Inter. , 180(3–4): 148–153
    Hansen, U., Yuen, D. A., Kroening, S. E., et al., 1993. Dynamical Consequences of Depth-Dependent Thermal Expansivity and Viscosity on Mantle Circulations and Thermal Structure. Phys. Earth Planet. Inter. , 77(3–4): 205–223
    Hanyk, L., Moser, J., Yuen, D. A., et al., 1995. Time-Domain Approach for the Transient Responses in Stratified Viscoelastic Earth Models. Geophys. Res. Lett. , 22(10): 1285–1288 doi: 10.1029/95GL01087
    Hernlund, J. W., Thomas, C., Tackley, P. J., 2005. A Doubling of the Post-Perovskite Phase Boundary and Structure of the Earth's Lowermost Mantle. Nature, 434(7035): 882–886 doi: 10.1038/nature03472
    Hofmeister, A. M., 2007. Pressure Dependence of Thermal Transport Properties. Proc. Natl. Acad. Sci. , 104(22): 9192–9197 doi: 10.1073/pnas.0610734104
    Hofmeister, A. M., 2008. Inference of High Thermal Transport in the Lower Mantle from Laser-Flash Experiments and the Damped Harmonic Oscillator Model. Phys. Earth Planet. Inter. , 170(3–4): 201–206
    Hoink, T., Lenardic, A., 2008. Three-Dimensional Mantle Convection Simulations with a Low-Viscosity Asthenosphere and the Relationship between Heat Flow and the Horizontal Length Scale of Convection. Geophys. Res. Lett. , 35(10): L10304
    Huettig, C., 2008. Scaling Laws for Internally Heated Mantle Convection: [Dissertation]. Westfaelischen Wilhelms-Universitaet, Muenster
    Huettig, C., Stemmer, K., 2008. Finite Volume Discretization for Dynamic Viscosities on Voronoi Grids. Phys. Earth Planet. Inter. , 171(1–4): 137–146
    Hunt, S. A., Weidner, D. J., Li, L., et al., 2009. Weakening of Calcium Iridate during Its Transformation from Perovskite to Post-Perovskite. Nature Geosci. , 2(11): 794–797 doi: 10.1038/ngeo663
    Karato, S. I., 1986. Does Partial Melting Reduce the Creep Strength of the Upper Mantle? Nature, 319(6051): 309–310 doi: 10.1038/319309a0
    Karato, S. I., 2008. Insights into the Nature of Plume-Asthenosphere from Central Pacific Geophysical Anomalies. Earth Planet. Sci. Lett. , 274(1–2): 234–240
    Karato, S. I., 2010. The Influence of Anisotropic Diffusion on the High-Temperature Creep of a Polycrystalline Aggregate. Phys. Earth Planet. Inter. , 183(3–4): 468–472
    Katsura, T., Yokoshi, S., Kawabe, K., et al., 2009. P-V-T Relations of MgSiO3 Perovskite Determined by In Situ X-Ray Diffraction Using a Large-Volume High-Pressure Apparatus. Geophys. Res. Lett. , 36: L01305
    Kawai, K., Tsuchiya, T., 2009. Temperature Profile in the Lowermost Mantle from Seismological and Mineral Physics Joint Modeling. Proc. Natl. Acad. Sci. , 106(52): 22119–22123 doi: 10.1073/pnas.0905920106
    King, S. D., 2009. On Topography and Geoid from 2-D Stagnant-Lid Convection Calculations. Geochem., Geophys., Geosyst. , 10: Q03002
    King, S. D., Lee, C., Van-Keken, P. E., et al., 2010. A Community Benchmark for 2D Cartesian Compressible Convection in the Earth's Mantle. Geophys. J. Int. , 180(1): 73–87 doi: 10.1111/j.1365-246X.2009.04413.x
    Leitch, A. M., Yuen, D. A., Sewell, G., 1991. Mantle Convection with Internal Heating and Pressure-Dependent Thermal Expansivity. Earth Planet. Sci. Lett. , 102(2): 213–232 doi: 10.1016/0012-821X(91)90009-7
    Maruyama, S., 1994. Plume Tectonics. J. Geol. Soc. Japan, 100: 24–49 doi: 10.5575/geosoc.100.24
    Matyska, C., Yuen, D. A., 2006. Lower Mantle Dynamics with the Post-Perovskite Phase Change, Radiative Thermal Conductivity, Termperature and Depth-Dependent Viscosity. Phys. Earth Planet. Inter. , 154(2): 196–207 doi: 10.1016/j.pepi.2005.10.001
    Matyska, C., Yuen, D. A., 2007. Lower Mantle Material Properties and Convection Models of Multiscale Plumes. In: Fougler, G. T., Jurdy, D. M., eds., Plates, Plumes and Planetary Processes. Geological Society of America Special Paper, 137–163
    Mitrovica, J. X., Forte, A. M., 2004. A New Inference of Mantle Viscosity Based upon Joint Inversion of Convection and Glacial Isostatic Adjustment Data. Earth Planet. Sci. Lett. , 225(1–2): 177–189
    Moresi, L. N., Solomatov, V. S., 1995. Numerical Investigations of 2D Convection with Extremely Large Viscosity Variations. Phys. Fluids, 7: 2154–2162 doi: 10.1063/1.868465
    Nakagawa, T., Tackley, P. J., 2004. Effects of a Perovskite-Post Perovskite Phase Change near Core-Mantle Boundary in Compressible Mantle Convection. Geophys. Res. Lett. , 31(16): L16611 doi: 10.1029/2004GL020648
    Nakagawa, T., Tackley, P. J., Deschamps, F., et al., 2010. The Influence of MORB and Harzburgite Composition on Thermo-chemical Mantle Convection in a 3-D Spherical Shell with Self-Consistently Calculated Mineral Physics. Earth Planet. Sci. Lett. , 296(3–4): 403–412
    O'Farrell, K. A., Lowman, J. P., 2010. Emulating the Thermal Structure of Spherical Shell Convection in Plane-Layer Geometry Mantle Convection Models. Phys. Earth Planet. Inter. , 182(1–2): 73–84
    Oganov, A. R., Ono, S., 2004. Theoretical and Experimental Evidence for a Post-Perovskite Phase of MgSiO3 in Earth's D" Layer. Nature, 430(6998): 445–448 doi: 10.1038/nature02701
    Oganov, A. R., Ono, S., 2005. The High Pressure Phase of Alumina and Implications for Earth's D" Layer. Proc. Natl. Acad. Sci. , 102(31): 10828–10831 doi: 10.1073/pnas.0501800102
    Ohta, K., 2010. Electrical and Thermal Conductivity of the Earth's Lower Mantle: [Dissertation]. Tokyo Institute of Technology, Tokyo
    Oldenbur, D. W., Brune, J. N., 1972. Ridge Transform Fault Spreading Pattern in Freezing Wax. Science, 178(4058): 301–304 doi: 10.1126/science.178.4058.301
    Parmentier, E. M., 2007. The Dynamics and Convective Evolution of the Oceanic Upper Mantle. In: Schubert, G., Bercovici, D., eds., Treatise on Geophysics. Cambridge University Press, Cambridge. 7: 305–324
    Poirier, J. P., 1991. Introduction to the Physics of the Earth's Interior. Cambridge University Press, Cambridge
    Ricard, Y., Bai, W. M., 1991. Inferring Viscosity and the 3-D Density Structure of the Mantle from Geoid, Topography and Plate Velocities. Geophys. J. Int. , 105(3): 561–571 doi: 10.1111/j.1365-246X.1991.tb00796.x
    Richards, M. A., Yang, W. S., Baumgardner, J. R., et al., 2001. Role of a Low-Viscosity Zone in Stabilizing Plate Tectonics: Implications for Comparative Terrestrial Planetology. Geochem., Geophys., Geosyst. , 2(8), doi: 10.1029/2000GC000115
    Richter, F., 1973. Finite Amplitude Convection through a Phase Boundary. Geophys. J. R. Astron. Soc. , 35(1–3): 265–276
    Schenk, O., Gartner, K., Fichtner, W., 2000. Efficient Sparse LU Factorization with Left-Right Looking Strategy on Shared Memory Multiprocessors. BIT, 40(1): 158–176 doi: 10.1023/A:1022326604210
    Schubert, G., Froidevaux, C., Yuen, D. A., 1976. Oceanic Lithosphere and Asthenosphere: Thermal and Mechanical Structure. J. Geophys. Res. , 81(20): 3525–3540 doi: 10.1029/JB081i020p03525
    Schubert, G., Turcotte, D. L., Olson, P., 2001. Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge. 940
    Spiegelman, M., Katz, R. F., 2006. A Semi-Lagrangian Crank-Nicolson Algorithm for the Numerical Solution of Advection-Diffusion Problems. Geochem., Geophys., Geosyst. , 7: Q04014
    Stein, C., Hansen, U., 2008. Plate Motions and the Viscosity Structure of the MZantle-Insights from Numerical Modelling. Earth Planet. Sci. Lett. , 272(1–2): 29–40
    Steinbach, V., Yuen, D. A., 1995. The Effects of Temperature-Dependent Viscosity on Mantle Convection with the Two Major Phase Transitions. Phys. Earth Planet. Inter. , 90(1–2): 13–36
    Tang, X. L., Dong, J. J., 2010. Lattice Thermal Conductivity of MgO at Conditions of Earth's Interior. Proc. Natl. Acad. Sci. USA, 107(10): 4539–4543 doi: 10.1073/pnas.0907194107
    Tateno, S., Hirose, K., Sata, N., et al., 2009. Determination of Post-Perovskite Phase Transition Boundary up to 4 400 K and Implications for Thermal Structure in D" Layer. Earth Planet. Sci. Lett. , 277(1–2): 130–136
    Tosi, N., Sabadini, R., Marotta, A. M., et al., 2005. Simultaneous Inversion for the Earth's Mantle Viscosity and Ice Mass Imbalance in Antarctica and Greenland. J. Geophys. Res. , 110: B07402
    Tosi, N., Yuen, D. A., Cadek, O., 2010. Dynamical Consequences in the Lower Mantle with the Post-Perovskite Phase Change and Strongly Depth-Dependent Thermodynamic and Transport Properties. Earth Planet. Sci. Lett. , 298(1–2): 229–243
    van Bemmelen, R. W., Berlage, H. P., 1934. Versuch Einer Mathematischen Behandlung Geotektonischer Bewegungen Unter Besonderer Beruecksichtigung der Undationstheorie. Gerlands. Beitr. Z. Geophys. , 43(1–2): 19–55 (in German)
    Walte, N. P., Heidelbach, F., Miyajima, N., et al., 2009. Transformation Textures in Post-Perovskite: Understanding Mantle Flow in the D" Layer of the Earth. Geophys. Res. Lett. , 36: L04302
    Wentzcovitch, R. M., Justo, J. F., Wu, Z., et al., 2009. Anomalous Compressibility of Ferropericlase throughout the Iron Spin Cross-over. Proc. Natl. Acad. Sci. USA, 106(21): 8447–8452 doi: 10.1073/pnas.0812150106
    Wentzcovitch, R. M., Yu, Y. G., Wu, Z. Q., 2010. Thermodynamic Properties and Phase Relations in Mantle Minerals Investigated by First Priniciples Quasiharmonic Theory. Reviews in Mineralogy and Geochemistry, 71: 59–98 doi: 10.2138/rmg.2010.71.4
    Xu, Y. S., Shankland, T. J., Linhardt, S., et al., 2004. Thermal Diffusivity and Conductivity of Olivine, Wadsleyite and Ringwoodite to 20 GPa and 1 373 K. Phys. Earth. Planet. Inter. , 143–144: 321–336
    Yamamoto, M., Morgan, J. P., Morgan, W. J., 2007. Global Plume-Fed Asthenosphere Flow-Ⅰ: Motivation and Model Development. GSA Special Papers, 430: 165–188
    Yamazaki, D., Karato, S., 2007. Lattice Preferred Orientation of Lower Mantle Materials and Seismic Anisotropy in the D" Layer. In: Hirose, K., Brodholt, J., Lay, T., et al., eds., Post-Perovskite: The Last Mantle Phase Transition. AGU Monograph, 174: 69–78
    Yoshino, T., Yamazaki, D., 2007. Grain Growth Kinetics of CaIrO3 Perovskite and Post-Perovskite, with Implications for Rheology of D" Layer. Earth Planet. Sci. Lett. , 255(3–4): 485–493
    Yu, Y., Wu, Z., Wentzcovitch, R. M., 2008. α-β-γ Transformations in Mg2SiO4 in Earth's Transition Zone. Earth Planet. Sci. Lett. , 273: 115–122 doi: 10.1016/j.epsl.2008.06.023
    Yuen, D. A., Cadek, O., van Keken, P., et al., 1996. Combined Results from Mineral Physics, Tomography and Mantle Convection and Their Implications on Global Geodynamics. In: Boschi, E., Morelli, A., Ekstrom, G., eds., Seismic Modelling of the Earth's Structure. Editrice Compositori, Bologna. 463–505
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(952) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return